

Bioorganic & Medicinal Chemistry 15 (2007) 7809–7829

Bioorganic & Medicinal Chemistry

Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents

Zhengyan Cai, a,* Weicheng Zhoua and Lixin Sunb

^aInnovation Center for Drugs, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China ^bScreening Center for New Drugs, China Pharmaceutical University, Nanjing, 210009, PR China

> Received 20 July 2007; revised 21 August 2007; accepted 23 August 2007 Available online 28 August 2007

Abstract—A series of novel 4-thiophenyl quinoline-based mevalonolactone derivatives were synthesized from ethyl 6,7,8-trisubstituted-4-chloro-quinoline-3-carboxylates by several reactions and evaluated for their ability to inhibit the rat HMG CoA reductase in vitro. It was found that substitution with a variety of thiophenyl groups at position 4 in quinoline resulted in retention or enhancement of the inhibition and the preferable groups were 4-isopropyl-thiophenyl and 3-methoxy-thiophenyl. (4*R*,6*S*)-6-[(*E*)-2-(6,7,8-trifluoro-4-isopropylthiophenyl-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2*H*-pyran-2-one (A16) and (4*R*,6*S*)-6-[(*E*)-2-(6-fluoro-4,7-di-(3-methoxy-thiophenyl)-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2*H*-pyran-2-one (A23) were approximately three times more potent than rosuvastatin or pitavastatin in inhibiting HMG CoA reductase and selected as the hypocholesterolemic candidates for further evaluation.

1. Introduction

Hypercholesterolemia is well recognized as a primary risk factor in atherosclerotic diseases and coronary heart disease. Clinical studies with lipid-lowering agents have demonstrated that decreasing elevated serum cholesterol levels reduces the incidence of cardiovascular mortality. The class of drugs called statins are currently potent hepocholesterolemic agents for reducing low-density lipoprotein (LDL) particle concentration in the bloodstream by competitive inhibiting 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), a major rate-limiting enzyme in cholesterol biosynthesis. Currently available statins include lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, and pitavastatin.

The structure of statins is characterized by desmethylmevalonic acid or the lactone, the pharmacophore which is connected to a lipophilic ring, such as hexahydronaphthalene, indole, pyrrole, pyrimidine, or quinoline, by a linking element (a two-carbon spacer).³

Keywords: HMG CoA reductase inhibitors; 4-Thiophenyl quinolines; Synthesis

Numerous attempts to find new potent compounds and systematical QSAR study on heteroaromatic motifs have been undertaken. Sliskovic and Suzuki et al. found that some quinoline derivatives had potent inhibition on HMG CoA reductase. They disclosed the active compounds such as pitavastatin in which the desmethylmevalonic acid portion was linked through a *trans*-ethylene group to position 3 in quinoline, and a 4-fluorophenyl and 2-cyclopropyl groups were preferable substituents. The introduction of chloro, methyl, or methoxy group to the 6-, 7-, or 8-position of the quinoline nucleus may increase the inhibitory potency.

As part of our investigations on quinoline derivatives with pharmacological interests, we made our efforts toward optimization of the inhibition on HMG CoA reductase using a quinoline as the central ring. And herein, we describe the preparation of quinoline-containing mevalonolactones (compounds A), in which the lactone moiety was connected to position 3 of the quinoline nucleus via a *trans*-ethylene spacer and the nucleus was flanked at position 4 by substituted thiophenyl as a lipophilic group, and at position 6, 7, 8 by different groups, such an H, F, Cl substituted thiophenyl (see Fig. 1). The inhibition on HMG CoA reductase of these novel 4-thiophenyl quinoline derivatives will also be reported.

^{*}Corresponding author. Fax: +86 21 35052484; e-mail: caizy2007@ yahoo.com.cn

Figure 1.

2. Chemistry

The new 4-thiophenyl quinoline derivatives (A) were synthesized in optically pure forms by the general method shown in Scheme 1.

The aromatic nucleophilic substitution (S_NAr) reaction of ethyl halo-quinoline-3-carboxylates (**i1-i4**) with thiophenol, 4-fluorothiophenol, 3-methoxythiophenol, or 4-isopropylthiophenol was highly regiospecific to afford the 4-monosubstituted (**ii1-ii16**), 4,7-disubstituted (**ii17-ii28**), 4,7,8-trisubstituted (**ii29-ii36**) or 4,6,7,8-tetrasub-

stituted (ii36-ii40) products by controlling the reaction temperature, the type and concentration of the base, the solvents as well as the ratio of the substrate to the nucleophile.⁸ Characterizations of ii1-ii40 are shown in Table 1.

Subsequently, reduction of compounds ii to the alcohols iii was accomplished with diisobutylaluminum hydride (DIBAL-H). Bromination of the alcohols iii with PBr₃ afforded the bromides iv, which were converted to the corresponding phosphorus compounds v with Ph₂POEt in toluene. The olefins vii were generated by Wittig–Horner reaction of v with tert-butyl (3R,5S)-6-oxo-3,5-dihydroxy-3,5-O-isopropylidene-hexanoate (vi) under basic condition. The olefins vii were deprotected and lactonized with CF₃COOH in CH₂Cl₂ to give the target compounds A. Characterizations of A1–A40 are shown in Table 2.

3. Bioassay

The inhibitory activity of compounds **A**, with rosuvastatin, pitavastatin, atorvastatin, and fluvastatin as the references on rat liver HMG CoA reductase, was assayed spectrophotometrically, following the method of Kleinsek⁹ whereby the rate of decrease in absorbance

i1,
$$R_4 = H$$
, $R_5 = H$, $R_6 = H$
i2, $R_4 = H$, $R_5 = Cl$, $R_6 = H$
i3, $R_4 = F$, $R_5 = Cl$, $R_6 = H$
i4, $R_4 = F$, $R_5 = F$, $R_6 = F$

Scheme 1. Reagents and conditions: (a) substituted thiophenols, Et_3N/THF or K_2CO_3/DMF . (b) DIBAL-H, toluene, 0 (°C); (c) PBr₃, CH₂Cl₂; (d) Ph₂POEt, toluene, reflux; (e) n-BuLi, 2,2,6,6-tetramethyl-piperlidine, 0 (°C) rt; (f) CF₃COOH, CH₂Cl₂, 0 (°C).

$$R_{1}$$
 R_{2}
 R_{3}
 R_{3}

Compound	R	R_1	R_2	R_3	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl $_{3}$
ii1	Н	Н	Н	Н	88.9	Oil	9.07 (s,1H), 8.43 (dd, 1H, J = 8.4, 1.2 Hz), 8.14 (d, 1H, J = 8.4 Hz), 7.76–7.72 (m, 1H), 7.55–7.51 (m, 1H), 7.20–7.14 (m, 5H), 4.25 (q, 2H, J = 7.2 Hz), 1.28 (t, 3H, J = 7.2 Hz)
ii2	p-F	Н	Н	Н	89.9	52–4	9.05 (s,1H), 8.43 (dd, 1H, <i>J</i> = 8.6, 0.8 Hz), 8.14 (d, 1H, <i>J</i> = 8.4 Hz), 7.79–7.75 (m, 1H), 7.59–7.55 (m, 1H), 7.21 (dd, 2H, <i>J</i> = 11.8, 5.0 Hz), 6.93 (t, 2H, <i>J</i> = 6.4 Hz), 4.30 (q, 2H, <i>J</i> = 7.6 Hz), 1.33 (t, 3H, <i>J</i> = 7.2 Hz)
ii3	m-OCH ₃	Н	Н	Н	90.2	Oil	9.06 (s,1H), 8.43 (dd, 1H, <i>J</i> = 8.4, 1.2 Hz), 8.13 (dd, 1H <i>J</i> = 8.8, 1.2 Hz), 7.77–7.73 (m, 1H), 7.57–7.52 (m, 1H), 7.10 (t, 1H, <i>J</i> = 8.0 Hz), 6.75–6.67 (m, 3H), 3.66 (s, 3H) 4.29 (q, 2H, <i>J</i> = 7.2 Hz), 1.31 (t, 3H, <i>J</i> = 7.2 Hz)
ii4	p-CH(CH ₃) ₂	Н	Н	Н	98.0	44-6	9.03 (s,1H), 8.19 (dd, 1H, J = 8.4, 0.8 Hz), 8.13 (d, 1H, J = 8.4 Hz), 7.76–7.72 (m, 1H), 7.56–7.52 (m, 1H), 7.16-7.06 (m, 4H), 2.82 (t, 1H, J = 7.2 Hz), 1.18 (d, 6H, J = 6.8 Hz), 4.21 (q, 2H, J = 6.8 Hz), 1.27 (t, 3H, J = 6.8 Hz)
ii5	Н	Н	Cl	Н	79.6	82–4	9.06 (s, 1H), 8.37 (d, 1H, $J = 9.2$ Hz), 8.14, (d, 1H, $J = 2.0$ Hz), 7.48 (dd, 1H, $J = 9.2$, 2.0 Hz), 7.22–7.16 (m 5H), 4.26 (q, 2H, $J = 7.2$ Hz), 1.30 (t, 3H, $J = 6.8$ Hz)
ii6	p-F	Н	Cl	Н	97.1	91–4	9.04 (s, 1H), 8.36 (d, 1H, <i>J</i> = 9.2 Hz), 8.13 (d, 1H, <i>J</i> = 2.0 Hz), 7.50 (dd, 1H, <i>J</i> = 9.2, 2.0 Hz), 7.21–7.18 (m 2H), 6.95–6.91 (m, 2H), 4.29 (q, 2H, <i>J</i> = 7.2 Hz), 1.32 (t 3H, <i>J</i> = 7.2 Hz)
ii7	m-OCH ₃	Н	Cl	Н	95.8	76–8	9.06 (s, 1H), 8.35 (d, 1H, $J = 9.2$ Hz), 8.12 (d, 1H, $J = 2.0$ Hz), 7.47 (dd, 1H, $J = 9.2$, 2.0 Hz), 7.11–7.09 (m 1H), 6.74–6.70 (m, 3H), 3.68 (s, 3H), 4.29 (q, 2H, $J = 6.8$ Hz), 1.31 (t, 3H, $J = 6.8$ Hz)
ii8	<i>p</i> -CH(CH ₃) ₂	Н	Cl	Н	85.8	108–10	9.01 (s, 1H), 8.40 (d, 1H, $J = 9.2$ Hz), 8.11 (d, 1H, $J = 2.0$ Hz), 7.47 (dd, 1H, $J = 9.2$, 2.0 Hz), 7.14–7.07 (m,4H), 2.85–2.81 (m,1H), 1.18 (d, 6H, $J = 6.8$ Hz), 4.22 (q, 2H, $J = 7.6$ Hz), 1.28 (t, 3H, $J = 7.2$ Hz)
ii9	Н	F	Cl	Н	91.7	94–6	9.02 (s, 1H), 8.22 (d, 1H, <i>J</i> = 7.6 Hz), 8.14 (d, 1H, <i>J</i> = 10.4 Hz), 7.26–7.17 (m, 5H), 4.28 (q, 2H, <i>J</i> = 7.2 Hz) 1.33 (t, 3H, <i>J</i> = 7.6 Hz)
ii10	p-F	F	Cl	Н	88.5	100–2	9.00 (s, 1H), 8.22 (d, 1H, $J = 6.8$ Hz), 8.13 (d, 1H, $J = 10.4$ Hz), 7.21 (dd, 2H, $J = 11.8$, 5.0 Hz), 6.95 (t, 2H $J = 7.6$ Hz), 4.31 (q, 2H, $J = 7.2$ Hz), 1.33 (t, 3H, $J = 7.6$ Hz)

Table 1 (continued)

Compound	R	R_1	R_2	R_3	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl $_{3}$
ii11	m-OCH ₃	F	Cl	Н	98.0	50–2	9.01 (s, 1H), 8.20 (d, 1H, <i>J</i> = 7.2 Hz), 8.12 (d, 1H, <i>J</i> = 10.4 Hz), 7.15–7.11 (m, 1H), 6.74–6.71 (m, 3H), 3.69
ii12	<i>p</i> -CH(CH ₃) ₂	F	Cl	Н	89.2	116–8	(s, 3H), 4.29 (q, 2H, <i>J</i> = 7.2 Hz), 1.28 (t, 3H, <i>J</i> = 7.6 Hz) 8.98 (s, 1H), 8.20 (d, 1H, <i>J</i> = 7.2 Hz), 8.17 (d, 1H, <i>J</i> = 10.4 Hz), 7.15–7.09 (m, 4H), 2.84–2.86 (m, 1H), 1.20 (d, 6H, <i>J</i> = 6.8 Hz), 4.24 (q, 2H, <i>J</i> = 7.6 Hz), 1.29 (t, 3H, <i>J</i> = 7.2 Hz)
ii13	Н	F	F	F	59.6	92–4	9.04 (s, 1H), 8.05–7.99 (m, 1H), 7.26–7.17 (m, 5H), 4.27 (q, 2H, J = 7.2 Hz), 1.29 (t, 3H, J = 6.4 Hz)
ii14	p-F	F	F	F	60.0	126–8	9.04 (s, 1H), 8.05–8.00 (m, 1H), 7.24–7.20 (m, 2H), 6.99–6.94 (m, 2H), 4.30 (q, 2H, <i>J</i> = 7.2 Hz), 1.32 (t, 3H, <i>J</i> = 7.2 Hz)
ii15	m-OCH ₃	F	F	F	55.8	70–2	9.07 (s, 1H), 8.06–8.01 (m, 1H), 7.16 (t, 1H, <i>J</i> = 8.0 Hz), 6.77–6.72 (m, 3H), 3.72 (s, 3H), 4.31 (q, 2H, <i>J</i> = 7.2 Hz), 1.32 (t, 3H, <i>J</i> = 6.8 Hz)
ii16	<i>p</i> -CH(CH ₃) ₂	F	F	F	52.4	86–8	9.01 (s,1H), 8.08–8.03 (m, 1H), 7.15–7.10 (m,4H), 2.86–2.83 (m,1H), 1.19 (d, 6H, <i>J</i> = 6.8 Hz), 4.23 (q, 2H, <i>J</i> = 7.2 Hz), 1.28 (t, 3H, <i>J</i> = 7.2 Hz)
ii17	Н	Н	SC ₆ H ₅	Н	80.0	98–100	8.98 (s,1H), 8.29 (d, 1H, <i>J</i> = 9.2 Hz), 7.76 (d, 1H, <i>J</i> = 1.6 Hz), 7.34 (dd, 1H, <i>J</i> = 8.8, 1.6 Hz), 7.56–7.54 (m, 2H), 7.42–7.40 (m, 3H), 7.22–7.15 (m, 5H), 4.24 (q, 2H, <i>J</i> = 7.2 Hz), 1.28 (t, 3H, <i>J</i> = 7.6 Hz)
ii18	p-F	Н	SC ₆ H ₄ -4-F	Н	91.2	68–70	8.96 (s, 1H), 8.28 (d, 1H, <i>J</i> = 9.2 Hz), 7.66 (s, 1H), 7.56 (dd, 1H, <i>J</i> = 8.8, 5.6 Hz), 7.56 (dd, 2H, <i>J</i> = 10.0, 5.2 Hz), 7.20–7.10 (m, 4H), 6.91 (t, 2H, <i>J</i> = 7.4 Hz), 4.27 (q, 2H, <i>J</i> = 7.2 Hz), 1.30 (t, 3H, <i>J</i> = 7.2 Hz)
ii19	m-OCH ₃	Н	SC ₆ H ₄ -3-OCH ₃	Н	88.1	Oil	8.99 (s, 1H), 8.29 (d, 1H, <i>J</i> = 9.2 Hz), 7.80 (d, 1H, <i>J</i> = 2.0 Hz), 7.36 (dd, 1H, <i>J</i> = 8.8, 2.0 Hz), 7.31 (t, 1H, <i>J</i> = 8.0 Hz), 7.14–7.07 (m, 3H), 6.95–6.92 (m,1H), 6.73–6.68 (m,3H), 3.78 (s, 3H), 3.68 (s, 3H), 4.27 (q, 2H, <i>J</i> = 7.2 Hz), 1.30 (t, 3H, <i>J</i> = 7.2 Hz)
ii20	<i>p</i> -CH(CH ₃) ₂	Н	SC ₆ H ₄ -4-CH(CH ₃) ₂	Н	93.0	Oil	8.93 (s, 1H), 8.32 (d, 1H, <i>J</i> = 8.8 Hz), 7.71 (s, 1H), 7.34 (dd, 1H, <i>J</i> = 9.2, 1.6 Hz), 7.49 (d, 2H, <i>J</i> = 8.0 Hz), 7.28 (d, 2H, <i>J</i> = 8.4 Hz), 7.12–7.06 (m, 4H), 4.11 (q, 2H, <i>J</i> = 6.8), 2.95 (m,1H), 2.83 (m, 1H), 1.31–1.14 (m, 15H)
ii21	Н	F	SC_6H_5	Н	65.3	Oil	8.90 (s, 1H), 8.02 (d, 1H, J = 11.2 Hz), 7.53 (d, 1H, J = 8.0 Hz), 7.60–7.57 (m, 2H), 7.46–7.44 (m, 3H), 7.25–7.15 (m, 5H), 4.25 (q, 2H, J = 6.8 Hz), 1.27 (t, 3H, J = 7.2 Hz)
ii22	p-F	F	SC_6H_4 -4-F	Н	89.0	146–8	8.89 (s, 1H), 8.02 (d, 1H, <i>J</i> = 10.8 Hz), 7.45 (d, 1H, <i>J</i> = 7.2 Hz), 7.59 (dd, 2H, <i>J</i> = 7.0, 5.2 Hz), 7.22–7.15 (m, 4H), 6.94 (t, 2H, <i>J</i> = 7.6 Hz), 4.28 (q, 2H, <i>J</i> = 7.2 Hz), 1.31 (t, 3H, <i>J</i> = 6.8 Hz)

ii23	m-OCH ₃	F	SC ₆ H ₄ -3-OCH ₃	Н	60.0	Oil	8.92 (s, 1H), 8.02 (d, 1H, <i>J</i> = 11.2 Hz), 7.56 (d, 1H, <i>J</i> = 7. 6 Hz), 7.36 (t, 1H, <i>J</i> = 8.0 Hz), 7.17–7.01 (m, 3H), 7.00–
ii24	<i>p</i> -CH(CH ₃) ₂	F	SC ₆ H ₄ -4-CH(CH ₃) ₂	Н	77.7	88–90	6.97 (m, 1H), 6.74–6.70 (m, 3H), 3.80 (s, 3H), 3.69 (s, 3H), 4.27 (q, 2H, <i>J</i> = 7.2 Hz), 1.27 (t, 3H, <i>J</i> = 6.8 Hz) 8.86 (s, 1H), 8.05 (d, 1H, <i>J</i> = 11.2 Hz), 7.53–7.50 (m, 3H), 7.32 (d, 2H, <i>J</i> = 8.0 Hz), 7.13–7.08 (m, 4H), 2.97 (t, 1H, <i>J</i> = 6.8 Hz), 2.84 (t, 1H, <i>J</i> = 6.8 Hz), 1.30 (d, 6H, <i>J</i> = 7.2 Hz),1.20 (d, 6H, <i>J</i> = 6.8 Hz), 4.22 (q, 2H,
ii25	Н	F	SC ₆ H ₅	F	65.3	82–4	<i>J</i> = 7.2 Hz), 1.26 (t, 3H, <i>J</i> = 7.2 Hz) 9.01 (s, 1H), 7.93 (dd, 1H, <i>J</i> = 10.2, 2.0 Hz), 7.39–7.37 (m, 2H), 7.28–7.19 (m, 8H), 4.25 (q, 2H, <i>J</i> = 7.2 Hz), 1.29 (t,
ii26	p-F	F	SC ₆ H ₄ -4-F	F	52.6	114–6	3H, <i>J</i> = 6.8 Hz) 8.99 (s, 1H), 7.91 (dd, 1H, <i>J</i> = 9.0, 2.0 Hz), 7.46 (dd, 2H, <i>J</i> = 8.6, 5.2 Hz), 7.23 (dd, 2H, <i>J</i> = 8.6, 4.8 Hz), 7.00–6.94
ii27	m-OCH ₃	F	SC ₆ H ₄ -3-OCH ₃	F	60.0	Oil	(m, 4H), 4.28 (q, 2H, <i>J</i> = 7.2 Hz), 1.31 (t, 3H, <i>J</i> = 6.8 Hz) 9.02 (s, 1H), 7.93 (dd, 1H, <i>J</i> = 10.2, 1.2 Hz), 7.18–7.13 (m, 2H), 6.94–6.91 (m, 2H), 6.78–6.73 (m, 4H), 3.73 (s, 3H),
ii28	<i>p</i> -CH(CH ₃) ₂	F	SC ₆ H ₄ -4-CH(CH ₃) ₂	F	50.0	75–7	3.71 (s, 3H), 4.28 (q, 2H, <i>J</i> = 7.6), 1.31 (t, 3H, <i>J</i> = 7.2) 8.97 (s, 1H), 7.94 (dd, 1H, <i>J</i> = 10.4, 2.0 Hz), 7.35 (d, 2H, <i>J</i> = 8.0), 7.16–7.09 (m, 6H), 4.21 (q, 2H, <i>J</i> = 7.6), 2.88–2.83
ii29	Н	SC ₆ H ₅	SC ₆ H ₅	Н	90.2	110–3	(m, 2H), 1.29–1.19 (m, 15H) 9.10 (s, 1H), 7.92 (s, 1H), 7.88 (s, 1H), 7.59–7.53 (m, 5H), 7.43–7.40 (m, 5H), 7.18 (d, 3H, <i>J</i> = 7.6 Hz), 6.88 (d, 2H, <i>J</i> = 7.6 Hz), 4.29 (q, 2H, <i>J</i> = 6.8 Hz), 1.27 (t, 3H,
ii30	<i>p</i> -F	SC ₆ H ₄ -4-F	SC ₆ H ₄ -4-F	Н	88.0	118–22	J = 7.2 Hz) 8.87 (s, 1H), 7.97 (s, 1H), 7.44 (s, 1H), 7.55 (dd, 2H, J = 7.0, 5.2 Hz), 7.34 (dd, 2H, J = 6.8, 5.2 Hz), 7.15 (t, 2H, J = 6.8 Hz), 7.04 (t, 2H, J = 8.4 Hz), 6.94 (dd, 2H, J = 7.0,
ii31	m-OCH ₃	SC ₆ H ₄ -3-OCH ₃	SC ₆ H ₄ -3-OCH ₃	Н	62.0	Oil	4.4 Hz), 6.85 (t, 2H, $J = 8.4$ Hz), 4.30 (q, 2H, $J = 6.8$ Hz), 1.31 (t, 3H, $J = 7.2$ Hz) 8.89 (s, 1H), 8.18 (s, 1H), 7.57 (s, 1H), 7.34 (t, 1H, $J = 8.0$ Hz), 7.24–7.20 (m, 1H), 7.15–7.12 (m, 1H), 7.09 (t, 1H, $J = 2.0$ Hz), 7.03 (t, 1H, $J = 8.0$ Hz), 7.00–6.95 (m, 1H), 6.88–6.85 (m, 3H), 6.66–6.63 (m, 1H), 6.56 (t, 1H, $J = 1.6$ Hz), 6.53–6.50 (m, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 3.66 (s, 3H), 4.30 (q, 2H, $J = 6.8$ Hz), 1.31 (t, 3H,
ii32	p-CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	Н	83.5	Oil	J = 7.2 Hz) 8.74 (s, 1H), 7.98 (s, 1H), 7.58 (s, 1H), 7.51 (d, 2H, J = 8.0 Hz), 7.30 (d, 4H, J = 8.4 Hz), 7.19 (d, 2H, J = 8.4 Hz), 7.01 (d, 2H, J = 8.4 Hz), 7.76 (d, 2H, J = 8.0 Hz), 2.97–2.92 (m, 2H), 2.84–2.81 (m, 1H), 4.27 (q, 2H, J = 7.2 Hz), 1.27 (t, 3H, J = 6.8 Hz)
ii33	Н	F	SC_6H_5	SC_6H_5	69.1	128-30	9.05 (s, 1H), 8.14 (d, 1H, $J = 10.8$ Hz), 7.26–7.11 (m, 15H),
ii34	p-F	F	SC ₆ H ₄ -4-F	SC ₆ H ₄ -4-F	89.3	80–3	4.23 (q, 2H, <i>J</i> = 6.8 Hz), 1.26 (t, 3H, <i>J</i> = 7.2 Hz) 9.03 (s, 1H), 8.11 (d, 1H, <i>J</i> = 10.4 Hz), 7.28–7.21 (m, 6H), 6.97–6.87 (m, 6H), 4.26 (q, 2H, <i>J</i> = 6.8 Hz), 1.26 (t, 3H, <i>J</i> = 7.2 Hz)
ii35	m-OCH ₃	F	SC ₆ H ₄ -3-OCH ₃	SC ₆ H ₄ -3-OCH ₃	60.3	104–6	9.07 (s, 1H), 8.14 (d, 1H, <i>J</i> = 10.4 Hz), 7.17 (m, 3H), 6.82–6.64 (m, 9H), 3.72 (s, 3H), 3.70 (s, 3H), 3.69 (s, 3H), 4.27 (q, 2H, <i>J</i> = 6.8 Hz), 1.29 (t, 3H, <i>J</i> = 6.8 Hz) (continued on next page)

- more - (continued)	ca)						
Compound R	R	R_1	\mathbb{R}_2	R_3	Yield (%)	Mp (°C)	Yield (%) Mp (°C) ^{1}H NMR δ ppm in CDCl ₃
ii36	$p ext{-CH}(ext{CH}_3)_2$	Ч	SC ₆ H ₄ -4-CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	65.8	Oil	9.04 (s, 1H), 8.14 (d, 1H, <i>J</i> = 11.2 Hz), 7.18–7.02 (m, 12H), 4.20 (q, 2H, <i>J</i> = 6.8 Hz), 2.88–2.81 (m,3H), 1.33–1.15 (m, 21H)
ii37	Н	SC ₆ H ₅	SC_6H_5	SC_6H_5	0.86	91–3	8.90 (s, 1H), 7.88 (s, 1H), 7.52–7.40 (m, 5H), 7.30–7.04 (m, 13H), 6.85–6.83 (m, 2H), 4.25 (q, 2H, $J = 6.8$ Hz), 1.27 (t, 3H, $J = 6.8$ Hz)
1138	p-F	$\mathrm{SC}_6\mathrm{H}_4$ -4-F	SC_6H_4 -4-F	SC ₆ H ₄ -4-F	90.2	126-8	8.87 (s, 1H), 7.72 (s, 1H), 7.40 (dd, 2H, J = 9.8, 5.2 Hz), 7.19 (dd, 2H, J = 8.4, 5.2 Hz), 7.14-7.10 (m, 4H), 6.93–6.80 (m, 8H), 4.27 (q, 2H, J = 7.6 Hz), 1.27 (t, 3H, J = 7.2 Hz)
ii39	m-OCH ₃	SC ₆ H ₄ -3-OCH ₃	SC ₆ H ₄ -3-OCH ₃	SC ₆ H ₄ -3-OCH ₃	76.9	Oil	8.92 (s, 1H), 7.95 (s, 1H), 7.29 (t, 1H, $J = 8.0 \text{ Hz}$), 7.09 (t, 1H, $J = 7.6 \text{ Hz}$), 7.05–6.94 (m, 5H),6.73–6.58 (m, 7H), 6.44–6.37 (m, 2H), 3.76 (m, 3H), 3.67 (s, 3H), 3.65 (s, 3H), 3.64 (s, 3H), 4.26 (q, 2H, $J = 6.8 \text{ Hz}$), 1.27 (t, 3H, $J = 7.2 \text{ Hz}$)
ii40	<i>p</i> -CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	SC ₆ H ₄ -4-CH(CH ₃) ₂	84.3	Oil	8.86 (s,1H), 7.82 (s, 1H), 7.34–7.25 (m, 4H), 7.13–7.10 (m, 2H), 7.06–6.95 (m, 8H), 6.77–6.75 (m, 2H), 3.00–2.97 (m, 1H), 2.85–2.76 (m, 3H), 1.34–1.16 (m, 24H), 4.20 (q, 2H, $J = 6.8$ Hz), 0.86 (t, 3H, $J = 5.2$ Hz)

at 340 nm due to the oxidation of NADPH was measured. The enzyme preparation and assay procedures used in this study were the same as those described in the literature. $^{10-13}$

3.1. The preliminary screening

According to the protocol in experiment, the assay system without any inhibitor was taken as the negative control. The test compounds $(6.6 \times 10^{-5} \text{ M})$ at final concentration) which gave the decreased UV absorbance more than 80% of that in negative control were defined as no significantly active ones and those (totally 19 compounds **A**) giving less than 80% of decreased absorbance would go to the secondary screening (IC₅₀ determination).

3.2. IC₅₀ determination

The concentration of an inhibitor required to inhibit 50% of the HMG CoA reductase under the above assay conditions was defined as IC₅₀. The UV absorbance was measured in eight levels $(5 \times 10^{-4} \text{ M}, 1 \times 10^{-4} \text{ M}, 5 \times 10^{-5} \text{ M}, 1 \times 10^{-5} \text{ M}, 5 \times 10^{-6} \text{ M}, 1 \times 10^{-6} \text{ M}, 5 \times 10^{-7} \text{ M}$ and $1 \times 10^{-7} \text{ M}$ at final concentration) for each sample. A statistical analysis was performed by standard curve using mean values of triplicate measurements (n = 3). The results are seen in Table 3.

4. Results and discussion

(1) Effects of modification of 4-position. For known pitavastatin analogues, a phenyl group is connected at position 4 in the quinoline and it is located in the ortho to the pharmacophore group at position 3. This substitution pattern is also found in other artificial HMG CoA inhibitors such as fluvastatin. atorvastatin, and rosuvastatin which belong to the indole, pyrrole and pyrimidine derivatives, respectively. The 4-thiophenyl, 4-(4-fluoro-thiophenyl), 4-(3-methoxy-thiophenyl) or 4-(4-isopropyl-thiophenyl)-quinolines were first disclosed in this paper and among them, 19 novel compounds were found to possess good or moderate inhibition on HMG CoA reductase. In particular, 14 compounds displayed the activity better than or equivalent to that of fluvastatin. And the inhibition of five compounds: A16, A23, A40, A21, and A14 was more potent than that of rosuvastatin.

It was known that the preferable group at position 4 in pitavastatin analogues was 4-fluorophenyl. Surprisingly, 4-isopropyl-thiophenyl or 3-methoxy-thiophenyl group was found to be superior to 4-fluorothiophenyl (A16 vs A14, A4 vs A2, and A12 vs A10; A11 vs A10, A23 vs A22, A27 vs A26 and A31 vs A30) in the thiophenyl quinolines.

(2) Effects of modification of R₂. The early report showed that replacement of H by some small groups, e.g. Cl or OCH₃, might enhance the activity in the 4-fluorophenyl-quinolines.³ The present work demonstrated that introduction of the bulky group

Table 2. Characterization of the target compounds A1–40^a

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5

Compound	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	Formula MS EI ⁺ (M+1)	1 H NMR δ ppm in CDCl $_{3}$
A1	+26.7, c 0.94, CH ₂ Cl ₂	91.7	102–4	C ₂₂ H ₁₉ NO ₃ S 378	9.29 (s, 1H), 8.38 (d, 1H, <i>J</i> = 8.4 Hz), 8.09 (d, 1H, <i>J</i> = 7.6 Hz), 7.80–7.75 (m, 1H), 7.67–7.63 (m, 1H), 7.32 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.24 (t, 2H, <i>J</i> = 7.6 Hz), 7.17 (t, 1H, <i>J</i> = 7.2 Hz), 7.08–7.06 (m, 2H), 6.75 (dd, 1H, <i>J</i> = 16.0, 6.0 Hz), 5.31–5.26 (m, 1H), 4.15–4.12 (m, 1H), 2.71–2.42 (m, 2H), 1.95–1.77 (m, 2H)
A2	+28.9, c 0.47, CH ₂ Cl ₂	82.2	130–2	C ₂₂ H ₁₈ FNO ₃ S 396	9.08 (s, 1H), 8.46 (d, 1H, $J = 8.0$ Hz), 8.11 (d, 1H, $J = 8.4$ Hz), 7.73–7.69 (m, 1H), 7.76 (t, 1H, $J = 7.2$ Hz), 7.40 (dd, 1H, $J = 16.2$, 1.2 Hz), 7.08–7.04 (m, 2H), 6.91–6.87 (m, 2H), 6.34, (dd, 1H, $J = 16.0$, 6.0 Hz), 5.38–5.34 (m, 1H), 4.42–4.39 (m, 1H), 2.80–2.63 (m, 2H), 2.07–1.83 (m, 2H)
A3	+24.2, c 0.88, CH ₂ Cl ₂	95.6	132–5	$C_{23}H_{21}NO_4S$ 408	9.09 (s, 1H), 8.47 (d, 1H, $J = 8.4$ Hz), 8.11 (d, 1H, $J = 8.8$ Hz), 7.71 (t, 1H, $J = 7.6$ Hz), 7.56 (t, 1H, $J = 8.0$ Hz), 7.37 (d, 1H, $J = 16.4$ Hz), 7.07 (t, 1H, $J = 8.0$ Hz), 6.67–6.57 (m, 3H), 6.34, (dd, 1H, $J = 16.2$, 5.6 Hz), 5.36–5.33 (m, 1H), 4.35–4.33 (m, 1H), 3.68 (s, 3H), 2.77–2.61 (m, 2H), 2.03–1.82 (m, 2H)
A4	+28.9, c 0.84, CH ₂ Cl ₂	37.8	147–8	C ₂₅ H ₂₅ NO ₃ S 420	9.09 (s, 1H), 8.51 (d, 1H, $J = 8.4$ Hz), 8.12 (d, 1H, $J = 8.0$ Hz), 7.71 (t, 1H, $J = 8.0$ Hz), 7.56 (t, 1H, $J = 8.0$ Hz), 7.41 (d, 1H, $J = 16.8$ Hz), 7.06–7.00 (m, 4H), 6.33 (dd, 1H, $J = 16.4$, 6.0 Hz), 5.34 (s, 1H), 4.36 (s, 1H), 2.85–2.74 (m, 1H), 2.72–2.63 (m, 2H), 2.02–1.82 (m, 2H), 1.18 (d, 6H, $J = 6.8$ Hz)
A5	+25.0, c 1, CH ₂ Cl ₂	48.7	158–9	C ₂₂ H ₁₈ ClNO ₃ S 412	9.07 (s, 1H), 8.38 (d, 1H, J = 9.2 Hz), 8.09 (d, 1H, J = 2.0 Hz), 7.48 (dd, 1H, J = 9.2, 2.4 Hz), 7.34 (dd, 1H, J = 16.4, 1.6 Hz), 7.20–7.01 (m, 5H),6.34 (dd, 1H, J = 16.4, 6.0 Hz), 5.37–5.32 (m, 1H), 4.37–4.33 (m, 1H), 2.76–2.62 (m, 2H), 2.05–1.78 (m, 2H)
A6	+21.1, c 1, CH ₂ Cl ₂	48.7	179–81	C ₂₂ H ₁₇ CIFNO ₃ S 430	9.06 (s, 1H), 8.38 (d, 1H, <i>J</i> = 8.8 Hz), 8.09 (d, 1H, <i>J</i> = 2.0 Hz), 7.50 (dd, 1H, <i>J</i> = 9.2, 2.0 Hz), 7.37 (dd, 1H, <i>J</i> = 16.0, 0.8 Hz), 7.07–7.03 (m, 2H),6.93–6.88 (m, 2H), 6.34 (dd, 1H, <i>J</i> = 15.8, 5.6 Hz), 5.39–5.34 (m, 1H), 4.42–4.38 (m, 1H), 2.79–2.64 (m, 2H), 2.09–1.81 (m, 2H)
A7	+22.3, c 1, CH ₂ Cl ₂	57.5	140–2	C ₂₃ H ₂₀ CINO ₄ S 442	9.07 (s, 1H), 8.38 (d, 1H, <i>J</i> = 9.2 Hz), 8.09 (d, 1H, <i>J</i> = 1.6 Hz), 7.49 (dd, 1H, <i>J</i> = 9.2, 2.0 Hz), 7.34 (dd, 1H, <i>J</i> = 16.0, 0.8 Hz), 7.08 (t, 1H, <i>J</i> = 8.0 Hz), 6.68–6.55 (m, 3H), 6.34 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.37–5.32 (m, 1H), 4.34–4.32 (m, 1H), 3.69 (s, 3H), 2.76–2.62 (m, 2H), 2.05–1.79 (m, 2H)
A8	+14.1, c 1, CH ₂ Cl ₂	41.0	170	C ₂₅ H ₂₄ CINO ₃ S 454	2.70=2.02 (m, 2H), 2.63=1.7 (m, 2H) 9.07 (s, 1H), 8.42 (d, 1H, <i>J</i> = 8.8 Hz), 8.10 (d, 1H, <i>J</i> = 2.0 Hz), 7.49 (dd, 1H, <i>J</i> = 8.8, 2.0 Hz), 7.37 (dd, 1H, <i>J</i> = 16.0, 0.8 Hz), 7.06–6.96 (m,4H), 6.33 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.36–5.32 (m, 1H), 4.38–4.35 (m, 1H), 2.85–2.80 (m,1H), 2.78–2.62 (m, 2H), 2.04–1.79 (m, 2H), 1.18 (d, 6H, <i>J</i> = 6.8 Hz)
A9	+18.3, c 1, CHCl ₃	63.0	172–4	C ₂₂ H ₁₇ ClFNO ₃ S 430	9.05 (s, 1H), 8.19–8.15 (m, 2H), 7.35 (dd, 1H, <i>J</i> = 16.0, 1.2 Hz), 7.22–7.15 (m, 3H), 7.05–7.02 (m, 2H), 6.36 (dd, 1H, <i>J</i> = 16.2, 6.0 Hz), 5.37–5.32 (m, 1H), 4.37–4.33 (m, 1H), 2.77–2.61 (m, 2H), 2.05–1.79 (m, 2H)

Table 2 (continued)

Compound	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	Formula MS EI ⁺ (M+1)	1 H NMR δ ppm in CDCl $_{3}$
A10	+25.1, c 1, CH ₂ Cl ₂	75.0	192–4	C ₂₂ H ₁₆ ClF ₂ NO ₃ S 448	9.03 (s, 1H), 8.19–8.15 (m, 2H), 7.37 (dd, 1H, <i>J</i> = 16.6, 0.8 Hz), 7.08–7.03 (m, 2H), 6.95–6.90 (m, 2H), 6.36 (dd, 1H, <i>J</i> = 16.2, 5.6 Hz), 5.39–5.35 (m, 1H), 4.42–4.40 (m, 1H), 2.79–2.64 (m, 2H), 2.09–1.80 (m, 2H)
A11	+21.1, c 1, CH ₂ Cl ₂	62.2	150–3	C ₂₃ H ₁₉ CIFNO ₄ S 460	9.04 (s, 1H), 8.19–8.15 (m, 2H), 7.34 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.10 (t, 1H, <i>J</i> = 8.0 Hz), 6.70–6.67 (m, 1H), 6.61–6.56 (m, 2H), 6.36 (dd, 1H, <i>J</i> = 16.2, 5.6 Hz), 5.37–5.33 (m, 1H), 4.37–4.33 (m, 1H), 3.71 (s, 3H), 2.77–2.61 (m, 2H), 2.05–1.80 (m, 2H)
A12	+16.2, c 1, CH ₂ Cl ₂	63.7	175–7	C ₂₅ H ₂₃ CIFNO ₃ S 472	9.02 (s, 1H), 8.19–8.15 (m, 2H), 7.37 (d, 1H, J = 16.8 Hz), 7.06 (d,2H, J = 8.4 Hz), 6.96 (d,2H, J = 8.8 Hz), 6.35 (dd, 1H, J = 16.4, 6.0 Hz), 5.38–5.33 (m, 1H), 4.39–4.36 (m, 1H), 2.85–2.78 (m,1H), 2.72–2.62 (m, 2H), 2.04–1.78 (m, 2H), 1.18 (d, 6H, J = 7.2 Hz)
A13	+27.7, c 1, CH ₂ Cl ₂	81.4	177–8	C ₂₂ H ₁₆ F ₃ NO ₃ S 432	9.08 (s, 1H), 8.08–8.03 (m, 1H), 7.35 (dd, 1H, <i>J</i> = 16.4, 1.6 Hz), 7.23–7.14 (m, 3H), 7.04–7.02 (m, 2H), 6.36 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.37–5.32 (m, 1H), 4.37–4.35 (m, 1H), 2.76–2.62 (m, 2H), 2.05–1.77 (m, 2H)
A14	+26.2, c 1, CH ₂ Cl ₂	50.9	183–5	C ₂₂ H ₁₅ F ₄ NO ₃ S 450	9.07 (s, 1H), 8.08–8.03 (m, 1H), 7.36 (d, 1H, <i>J</i> = 16.4 Hz), 7.09–7.05 (m,2H), 6.95–6.91 (m,2H), 6.36 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.40–5.35 (m, 1H), 4.41 (s, 1H), 2.79–2.65 (m, 2H), 2.08–1.79 (m, 2H)
A15	+25.5, c 0.6, CH ₂ Cl ₂	54.7	168–70	C ₂₃ H ₁₈ F ₃ NO ₄ S 462	9.08 (s, 1H), 8.08–8.03 (m, 1H),7.33 (dd, 1H, <i>J</i> = 16.0, 1.2 Hz), 7.11 (t, 1H, <i>J</i> = 8.0 Hz), 6.72–6.55 (m, 3H), 6.36 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.38–5.33 (m, 1H), 4.37–4.35 (m, 1H), 3.71 (s, 3H), 2.77–2.62 (m, 2H), 2.06–1.79 (m, 2H)
A16	+18.7, c 1, CH ₂ Cl ₂	62.0	169–71	C ₂₅ H ₂₂ F ₃ NO ₃ S 474	9.08 (s, 1H), 8.11–8.06 (m, 1H), 7.37 (d, 1H, <i>J</i> = 16.4 Hz), 7.09–7.00 (m,4H), 6.35, (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.37–5.32 (m, 1H), 4.39–4.36 (m, 1H), 2.86–2.79 (m,1H), 2.78–2.62 (m, 2H), 2.03–2.78 (m, 2H), 1.22–1.18 (m, 6H)
A17	+17.8, c 0.8, CH ₂ Cl ₂	64.6	138–40	$C_{28}H_{23}NO_3S_2$ 486	9.00 (s, 1H), 8.32 (d, 1H, <i>J</i> = 8.8 Hz), 7.80 (s, 1H), 7.55–7.52 (m, 1H), 7.41–7.31 (m, 6H), 7.19–7.01 (m, 5H), 6.29 (dd, 1H, <i>J</i> = 16.2, 6.4 Hz), 5.33–5.29 (m, 1H), 4.33–4.31
A18	+12.2, c 0.97, CH ₂ Cl ₂	75.9	140–2	$C_{30}H_{27}NO_5S_2$ 522	(m, 1H), 2.75–2.59 (m, 2H), 2.01–1.78 (m, 2H) 9.00 (s, 1H), 8.31 (d, 1H, <i>J</i> = 9.2 Hz), 7.69 (d, 1H, <i>J</i> = 1.6 Hz), 7.56–7.53 (m, 2H),7.36–7.32 (m, 2H), 7.13–7.19 (m, 2H), 7.05–7.02 (m, 2H), 6.91–6.86 (m, 2H), 6.29 (dd, 1H, <i>J</i> = 16.2, 6.4 Hz), 5.36–5.32 (m, 1H), 4.383 (m, 1H), 2.78–2.62 (m, 2H), 2.08–1.80 (m, 2H)
A19	+15.9, c 1, CH ₂ Cl ₂	52.8	48–51	C ₃₀ H ₂₇ NO ₅ S ₂ 546	9.01 (s, 1H), 8.33 (d, 1H, J = 8.8 Hz), 7.84 (d, 1H, J = 2.0 Hz), 7.40 (dd, 1H, J = 8.8, 2.0 Hz), 7.34–7.26 (m, 2H), 7.12–7.05 (m, 3H), 6.93–6.90 (m, 1H), 6.68–6.56 (m, 3H), 6.30 (dd, 1H, J = 16.2, 6.0 Hz),5.35–5.30 (m, 1H), 4.34–4.323 (m, 1H), 3.78 (s, 3H), 3.69 (s, 3H), 2.76–2.60 (m, 2H), 2.03–1.80 (m, 2H)

A20	+7.4, c 1, CH ₂ Cl ₂	66.5	109–12	C ₃₄ H ₃₅ NO ₃ S ₂ 570	9.01 (s, 1H), 8.37 (d, 1H, J = 8.8 Hz), 7.78 (d, 1H, J = 1.6 Hz), 7.40 (dd, 1H, J = 6.6, 2.0 Hz), 7.51 (d, 2H, J = 8.4 Hz), 7.35–7.28 (m, 2H), 7.08–6.98 (m, 4H), 6.31 (dd, 1H, J = 16.2, 6.0 Hz), 5.35–5.32 (m, 1H), 4.373 (s, 1H), 2.99–2.95 (m,1H), 2.85–2.80 (m, 1H), 2.79–2.62 (m, 2H), 2.03–1.82 (m, 2H), 1.31 (d, 6H, J = 7.2 Hz), 1.20 (d, 6H, J = 7.2 Hz)
A21	+8.0, c 0.8, CH ₂ Cl ₂	82.2	92–4	C ₂₈ H ₂₂ FNO ₃ S ₂ 504	8.93 (s, 1H),8.06 (d, 1H, <i>J</i> = 11.2 Hz), 7.60–7.56 (m, 3H), 7.45–7.42 (m, 2H), 7.32 (dd, 1H, <i>J</i> = 16.8, 1.6 Hz), 7.21–7.11 (m, 3H), 7.04–7.01 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.34–5.29 (m, 1H), 4.33–4.31 (m, 1H), 2.74–2.59
A22	+2.4, c 1, CH ₂ Cl ₂	67.0	128–30	C ₂₈ H ₂₀ F ₃ NO ₃ S ₂ 540	(m, 2H), 2.05–1.77 (m, 2H) 8.92 (s, 1H), 8.04 (d, 1H, <i>J</i> = 11.2 Hz), 7.49 (d, 1H, <i>J</i> = 7.6 Hz), 7.33 (dd, 1H, <i>J</i> = 16.0, 0.8 Hz), 7.60–7.56 (m, 2H), 7.17–7.13 (m, 2H), 7.07–7.03 (m, 2H), 6.93–6.88 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.36–5.32 (m, 1H), 4.38–4.36 (m, 1H), 2.77–2.67 (m, 2H), 2.05–1.79 (m, 2H)
A23	+6.0, c 1, CH ₂ Cl ₂	67.9	133–4	C ₃₀ H ₂₆ FNO ₅ S ₂ 564	8.93 (s, 1H), 8.06 (d, 1H, <i>J</i> = 11.2 Hz), 7.36–7.29 (m, 2H), 7.16–7.07 (m, 3H), 6.98–6.95 (m, 1H), 6.69–6.67 (m, 1H), 6.60–6.56 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.34–5.30 (m, 1H), 4.33–4.31 (m, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 2.75–2.59 (m, 2H), 2.02–1.79 (m, 2H)
A24	+2.9, c 1, CH ₂ Cl ₂	45.8	134-6	C ₃₄ H ₃₄ FNO ₃ S ₂ 588	8.91 (s, 1H), 8.06 (d, 1H, <i>J</i> = 11.2 Hz), 7.55–7.50 (m, 3H), 7.36–7.25 (m, 3H), 7.07–6.95 (m, 4H), 6.29 (dd, 1H, <i>J</i> = 16.4, 6.4 Hz), 5.34–5.29 (m, 1H), 4.35–4.33 (m, 1H), 2.75–2.59 (m, 2H), 3.00–2.93 (m, 1H), 2.85–2.78 (m, 1H), 2.03–1.78 (m, 2H), 1.30 (d, 6H, <i>J</i> = 6.4 Hz), 1.18 (d, 6H, <i>J</i> = 6.4 Hz)
A25	+ 23.7, c 1, CH ₂ Cl ₂	59.8	186–8	C ₂₈ H ₂₁ F ₂ NO ₃ S ₂ 522	9.06 (s, 1H), 7.98 (dd, 1H, <i>J</i> = 10.0, 1.2 Hz), 7.39–7.32 (m, 3H), 7.28–7.14 (m, 6H), 7.06–7.04 (m, 2H), 6.38 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.37–5.32 (m, 1H), 4.36–4.34 (m, 1H), 2.76–2.61 (m, 2H), 2.06–1.76 (m, 2H)
A26	+ 20.4, c 1, CH ₂ Cl ₂	64.2	156–8	C ₂₈ H ₁₉ F ₄ NO ₃ S ₂ 558	9.04 (s, 1H), 7.95 (dd, 1H, J = 10.0, 2.0 Hz), 7.35 (dd, 1H, J = 16.4, 1.2 Hz), 7.47–7.44 (m, 2H), 7.09–7.05 (m, 2H), 7.00–6.90 (m, 4H), 7.37 (dd, 1H, J = 16.4, 5.6 Hz), 5.39–5.34 (m, 1H), 4.40–4.39 (m, 1H), 2.78–2.64 (m, 2H), 2.08–1.78 (m, 2H)
A27	+21.4, c 1, CH ₂ Cl ₂	53.2	140–2	$C_{30}H_{25}F_2NO_5S_2$ 582	9.06 (s, 1H), 7.97 (dd, 1H, $J = 10.0$, 0.8 Hz), 7.33 (d, 1H, $J = 16.0$ Hz), 7.18–7.08 (m, 2H), 6.93–6.90 (m, 2H), 6.77–6.57 (m, 4H), 6.38 (dd, 1H, $J = 16.4$, 5.6 Hz), 5.37–5.34 (m, 1H), 4.36–4.34 (m, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 2.76–2.61 (m, 2H), 2.04–1.77 (m, 2H)
A28	+ 17.4, c 1, CH ₂ Cl ₂	96.8	145–7	C ₃₄ H ₃₃ F ₂ NO ₃ S ₂ 606	9.04 (s, 1H), 7.99 (dd, 1H, $J = 10.4, 1.2$ Hz), 7.38–7.34 (m, 3H), 7.13–7.06 (m, 4H), 6.99–6.97 (m, 2H), 6.36 (dd, 1H, $J = 16.4$, 6.0 Hz), 5.35–5.32 (m, 1H), 4.36–4.35 (m, 1H), 2.87–2.80 (m, 2H), 2.77–2.61 (m, 2H), 2.02–1.78 (m, 2H), 1.21–1.17 (m, 12H)

(continued on next page)

Table 2 (continued)

Compound	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	Formula MS EI ⁺ (M+1)	1 H NMR δ ppm in CDCl ₃
A29	+19.7, c 1, CH ₂ Cl ₂	81.5	190–2	C ₃₄ H ₂₇ NO ₃ S ₃ 594	8.91 (s, 1H), 8.12 (s, 1H), 7.57 (s, 1H), 7.55–7.53 (m, 2H), 7.43–7.40 (m, 3H), 7.35–7.27 (m, 6H), 7.14–7.10 (m, 3H), 6.85–6.83 (m, 2H), 6.29 (dd, 1H, <i>J</i> = 16.0, 6.0 Hz),
A30	+18.0, c 1, CH ₂ Cl ₂	84.2	180–1	C ₃₄ H ₂₄ F ₃ NO ₃ S ₃ 648	5.32 (m, 1H), 4.34–4.33 (m, 1H), 2.75–2.63 (m, 2H), 2.03–1.80 (m, 2H) 8.91 (s, 1H), 7.96 (s, 1H), 7.50 (s, 1H), 7.57–5.73 (m, 2H), 7.38–7.33 (m, 3H), 7.16– 7.12 (m, 2H), 7.05–7.00 (m, 2H), 6.87–6.80 (m, 4H), 6.29 (dd, 1H, <i>J</i> = 16.0, 6.0 Hz), 5.38–5.33 (m, 1H), 4.41–4.39 (m, 1H), 2.79–2.62 (m, 2H), 2.09–1.84 (m, 2H)
A31	+21.4, c 1, CH ₂ Cl ₂	67.7	57–59	$C_{37}H_{33}NO_6S_3$ 684	8.91 (s, 1H), 8.19 (s, 1H), 7.61 (s, 1H), 7.34–7.28 (m, 2H), 7.21–6.83 (m, 8H), 6.64–6.61 (m, 1H), 6.46–6.38 (m, 2H), 6.28 (dd, 1H, <i>J</i> = 16.0,6.0 Hz), 5.33–5.29 (m,1H), 4.33–4.31 (m,1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.67 (s, 3H), 2.75–2.58 (m, 2H), 2.03–1.80 (m, 2H)
A32	+21.4, c 0.73, CH ₂ Cl ₂	50.3	182–4	C ₄₃ H ₄₅ NO ₃ S ₃ 720	8.88 (s, 1H),8.04 (s, 1H),7.54–7.49 (m, 3H), 7.37–7.26 (m, 5H), 7.20 (d, 2H, <i>J</i> = 8.0 Hz), 6.79 (d, 2H, <i>J</i> = 8.0 Hz), 6.75 (d, 2H, <i>J</i> = 8.4 Hz), 6.27 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.34–5.29 (m, 1H), 4.36–4.34 (m, 1H), 2.98–2.91 (m, 2H), 2.84–2.81 (m, 1H), 2.76–2.59 (m, 2H), 2.04–1.82 (m, 2H), 1.31–1.26 (m, 12H), 1.20 (d, 6H, <i>J</i> = 7.2 Hz)
A33	+ 15.4, c 0.9, CH ₂ Cl ₂	65.7	138–9	$C_{34}H_{26}FNO_3S_3$ 612	9.10 (s, 1H), 8.19 (d, 1H, <i>J</i> = 10.8 Hz), 7.32 (dd, 1H, <i>J</i> = 16.2, 1.2 Hz), 7.22–7.04 (m, 15H), 6.33 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 5.34–5.29 (m, 1H), 4.34–4.30 (m, 1H), 2.74–2.59 (m, 2H), 2.04–1.74 (m, 2H)
A34	+ 14.3, c 1, CH ₂ Cl ₂	52.4	194–6	$C_{34}H_{23}F_4NO_3S_3$ 665	9.09 (s, 1H), 8.16 (d, 1H, <i>J</i> = 10.8 Hz), 7.33 (dd, 1H, <i>J</i> = 16.0, 1.2 Hz), 7.27–7.20 (m, 4H), 7.09–7.06 (m, 2H), 6.95–6.87 (m, 6H), 7.34 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 5.37–5.32 (m, 1H), 4.39–4.38 (m, 1H), 2.78–2.63 (m, 2H), 2.06–1.77 (m, 2H)
A35	+17.9, c 0.94, CH ₂ Cl ₂	41.4	oil	$C_{37}H_{32}FNO_6S_3$ 702	9.11 (s, 1H), 8.20 (d, 1H, <i>J</i> = 10.4 Hz), 7.32 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.13–7.05 (m, 3H), 6.81–6.58 (m, 9H), 6.34 (dd, 1H, <i>J</i> = 16.0, 6.0 Hz), 5.34–5.29 (m, 1H), 4.34–4.32 (m, 1H), 3.71–3.69 (m, 9H), 2.76–2.60 (m, 2H), 2.02–1.77 (m, 2H)
A36	+16.6, c 1, CH ₂ Cl ₂	69.1	156–8	$C_{43}H_{44}FNO_3S_3$ 738	9.11 (s, 1H), 8.17 (d, 1H, $J = 10.8$ Hz), 7.34 (d, 1H, $J = 16.4$ Hz), 7.14 (t, 4H, $J = 8.4$ Hz), 7.08–7.02 (m, 6H), 6.98 (d, 2H, $J = 8.0$ Hz), 6.33 (dd, 1H, $J = 16.0$, 5.6 Hz), 5.35–5.32 (m, 1H), 4.35–4.33 (m, 1H), 2.85–2.80 (m, 3H), 1.20–1.18 (m, 18H), 2.80–2.64 (m, 2H), 1.99–1.79 (m, 2H)
A37	+ 31.1, c 0.92, THF	69.6	200–3	$C_{40}H_{31}NO_3S_4$ 702	8.98 (s, 1H), 7.87 (s, 1H), 7.43–7.25 (m, 6H), 7.19–7.04 (m, 13H), 6.74–6.72 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 5.33–5.29 (m, 1H), 4.35–4.34 (m, 1H), 2.75–2.59 (m, 2H), 2.03–1.79 (m, 2H)
A38	+ 25.5, c 1, THF	75.5	218–20	$C_{40}H_{27}F_4NO_3S_4$ 774	9.17 (s, 1H), 7.73 (s, 1H), 7.51–7.48 (m, 2H), 7.33–7.27 (m, 2H), 7.23–7.17 (m, 3H), 7.14–6.97 (m,8H), 6.84–6.75 (m, 3H), 5.31–5.23 (m, 1H), 5.14 (s, 1H), 2.71–2.42 (m, 2H), 1.94–1.75 (m, 2H)
A39	+28.2, c 1, CH ₂ Cl ₂	80.0	oil	C ₄₄ H ₃₉ NO ₇ S ₄ 822	9.00 (s, 1H), 7.95 (s, 1H), 7.32 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.26–7.22 (m, 2H), 7.11–6.94 (m, 6H), 6.74–6.57 (m, 6H), 6.34–6.27 (m, 3H), 5.32 (s, 1H), 4.35–4.33 (m, 1H), 3.72–3.66 (m, 12H), 2.75–2.63 (m, 2H), 2.03–1.83 (m, 2H)
A40	+ 21.9, c 1, Acetone	81.5	162–4	C ₅₂ H ₅₅ NO ₃ S ₄ 870	8.97 (s, 1H), 7.84 (s, 1H), 7.37–7.31 (m, 3H), 7.22 (d, 2H, <i>J</i> = 8.0 Hz), 7.13 (d, 2H, <i>J</i> = 7.2 Hz), 7.06–6.95 (m, 8H), 6.66 (d, 2H, <i>J</i> = 8.0 Hz), 6.29 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 5.31 (s, 1H), 4.35 (s, 1H), 2.97–2.94 (m, 1H), 2.85–2.77 (m, 3H), 2.75–2.59 (m, 2H), 2.02–1.79 (m, 2H), 1.29–1.16 (m, 24H)

^a The definition of R, R₁, R₂, and R₃ is the same as Table 1.

Table 3. Inhibition of HMG CoA reductase in vitro^a

Compound	R	R_1	R_2	R_3	$IC_{50}^{a}\left(\mu M\right)$
A2	4-F	Н	Н	Н	18.56
A4	$4-CH(CH_3)_2$	Н	Н	Н	12.65
A8	$4-CH(CH_3)_2$	Н	SC_6H_4 -4- $CH(CH_3)_2$	Н	15.75
A11	3-OCH ₃	F	Cl	Н	9.24
A12	$4-CH(CH_3)_2$	F	Cl	Н	22.05
A13	Н	F	F	F	10.67
A14	4-F	F	F	F	7.93
A16	$4-CH(CH_3)_2$	F	F	F	3.21
A21	Н	F	SC_6H_5	Н	4.41
A22	4-F	F	SC_6H_4 -4-F	Н	38.93
A23	3 -OCH $_3$	F	SC_6H_4 -3-OCH ₃	Н	3.64
A24	$4-CH(CH_3)_2$	F	SC_6H_4 -4- $CH(CH_3)_2$	Н	10.60
A27	3-OCH ₃	F	SC_6H_4 -3-OCH ₃	F	49.67
A29	Н	SC_6H_5	SC_6H_5	Н	32.55
A31	3 -OCH $_3$	SC ₆ H ₄ -3-OCH ₃	SC_6H_4 -3-OCH ₃	Н	15.37
A32	$4-CH(CH_3)_2$	SC_6H_4 -4- $CH(CH_3)_2$	SC_6H_4 -4- $CH(CH_3)_2$	Н	14.15
A34	4-F	F	SC_6H_4 -4-F	SC_6H_4 -4-F	11.94
A35	3 -OCH $_3$	F	SC_6H_4 -3-OCH ₃	SC_6H_4 -3-OCH ₃	74.55
A40	$4-CH(CH_3)_2$	SC_6H_4 -4- $CH(CH_3)_2$	SC_6H_4 -4- $CH(CH_3)_2$	SC_6H_4 -4- $CH(CH_3)_2$	4.35
Rosuvastatin C	alcium				9.03
Pitavastatin Cal	lcium				10.55
Atorvastatin Ca	alcium				13.22
Fluvastatin Sod	lium				21.21

^a see Section 6 for protocol.

(substituted thiophenyl) to 7-position might generally give more potency than the halogen (F, Cl) or hydrogen counterparts (A23 vs A11, A21 vs A13, and A34 vs A2). It suggested that a lipophilic interaction, other than a steric effect between R_2 and the domain of the enzyme, would be predominated.

(3) Effects of modification of R₁ and R₃. It is difficult to conclude the structure–activity relationship on the substituents at position 6 and position 8 in the quinoline. It seems that a variety of groups including H, halogen or substituted thiophenyl flanked at these positions are acceptable for the enzyme.

5. Conclusion

A series of 4-thiophenyl quinoline-based mevalonolactones was synthesized to evaluate their ability to inhibit HMG CoA reductase in vitro. It was found that substitution with a variety of thiophenyl groups at position 4 in quinoline resulted in retention or enhancement of the inhibition, and the preferable groups were 4-isopropylthiophenyl and 3-methoxy-thiophenyl. Secondly, in agreement with the previous literature, substitution at positions 6, 7, and 8 of the quinoline nucleus moderately increased the potency. (4*R*, 6*S*)-6-[(*E*)-2-(6,7,8-trifluoro-4-isopropylthiophenyl-quinoline-3-yl)-ethenyl]-3,4,5,6-

tetrahydro-4-hydroxy-2*H*-pyran-2-one (**A16**) and (4*R*, 6*S*)-6-[(*E*)-2-(6-fluoro-4,7-di-(3-methoxy-thiophenyl)-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2*H*-pyran-2-one (**A23**) were approximately three times more potent than rosuvastatin or pitavastatin in HMG CoA reductase inhibition and selected as the hypocholesterolemic candidates for further evaluation.

6. Experimental

Melting points were determined on an Electrothermal Melting Point Apparatus and were uncorrected. Samples were characterized on a 400 MHz Nuclear Magnetic Resonance Spectrometer with either deuterated dimethylsulfoxide or deuterated chloroform as solvent. Mass spectra were recorded by an LC-Platform Mass Spectrometer using Electrospray Ionization.

6.1. Ethyl 4-(4-fluorothiophenyl)-quinoline-3-carboxylate (ii2)

A mixture of ethyl 4-chloro-quinoline-3-carboxylate 1a (8.0 g, 34 mmol), 4-fluoro thiophenol (5.2 g, 41 mmol), triethylamine (6.9 g, 68 mmol), and THF (80 mL) was stirred at 25 °C for 1 h and then the reaction mixture was filtered. Upon concentration, the crude product solidified to give the title compound as a off-white solid

(10.0 g, 89.9%), which was used without further purification. mp: 52--4 °C, ¹H NMR δ ppm in CDCl₃: 9.05 (s,1H), 8.43 (dd, 1H, J = 8.6, 0.8 Hz), 8.14 (d, 1H, J = 8.4 Hz), 7.79–7.75 (m, 1H), 7.59–7.55 (m, 1H), 7.21 (dd, 2H, J = 11.8, 5.0 Hz), 6.93 (t, 2H, J = 6.4 Hz), 4.30 (q, 2H, J = 7.6 Hz), 1.33 (t, 3H, J = 7.2 Hz).

Compounds ii1 and ii3–12 were prepared in manner analogous to the method described above.

6.2. Ethyl 4-(4-fluorothiophenyl)-6,7,8-trifluoro-quinoline-3-carboxylate (ii14)

A solution of triethylamine (0.9 g, 8.6 mmol) in THF (60 ml) was dropped into a mixture of ethyl 4-chloro-6,7,8-trifluoro-quinoline-3-carboxylate, **i4** (5.0 g, 17.3 mmol), and 4-fluoro-thiophenol (2.2 g, 17.3 mmol) in THF (50 ml) at -15 °C. The mixture was stirred for 1 h at this temperature before quenching with water and ethyl acetate. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography (silica gel, petroleum ether–EtOAc, 10:1) to provide the title compound as a yellow solid (4.0 g, 60.0%). mp: 126–8 °C, ¹H NMR δ ppm in CDCl₃: 9.04 (s, 1H), 8.05–8.00 (m, 1H), 7.24–7.20 (m, 2H), 6.99–6.94 (m, 2H), 4.30 (q, 2H, J = 7.2 Hz), 1.32 (t, 3H, J = 7.2 Hz).

Compounds ii13, ii15, and ii16 were prepared in manner analogous to the method described above.

6.3. Ethyl 4,7-di-(3-methoxythiophenyl)-quinoline-3-car-boxylate (ii19)

3-Methoxythiophenol (10.8 g, 77 mmol) was added to a mixture of NaH (60%, 3.0 g, 75 mmol) in DMF (30 ml) at 0 °C. The resulting mixture was stirred at 0 °C for 0.5 h after which, 4,7-dichloro-quinoline-3-carboxylate, ii2 (7.0 g, 25.9 mmol) was added. The mixture was stirred at 60 °C for 0.5 h. When TLC indicated that the reaction was complete, the reaction mixture was transferred to a separatory funnel, then ethyl acetate and water were added. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated. The resulting oil was purified by silica gel chromatography (petroleum ether-EtOAc, 6:1) to provide the title compound (10.9 g, 88.1%) as an oil. ¹H NMR δ ppm in CDCl₃: 8.99 (s, 1H), 8.29 (d, 1H, J = 9.2 Hz), 7.80 (d, 1H, J = 2.0 Hz), 7.36 (dd, 1H, J = 8.8, 2.0 Hz), 7.31 (t, 1H, J = 8.0 Hz), 7.14–7.07 (m, 3H), 6.95–6.92 (m,1H), 6.73–6.68 (m,3H), 3.78 (s, 3H), 3.68 (s, 3H), 4.27 (q, 2H, J = 7.2 Hz), 1.30 (t, 3H, J = 7.2 Hz).

Compounds ii17, ii18, and ii20 were prepared in manner analogous to the method described above.

6.4. Ethyl 4,7-di-(3-methoxythiophenyl)-6-fluoro-quino-line-3-carboxylate (ii23)

A mixture of i3 (6.0 g, 20.8 mmol), 3-methoxythiophenol (5.8 g, 41.6 mmol) in DMF (20 ml) was stirred at

room temperature for 0.5 h before cooling to 0 °C. Anhydrous K_2CO_3 (20.0 g, 145 mmol) was added into the mixture and stirred for 1 h below 10 °C. The solid was isolated by filtration and washed with EtOAc. The resulting mixture was transferred to a separatory funnel, and ethyl acetate and water were added. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated. The resulting oil was purified by silica gel chromatography (petroleum ether–EtOAc, 6:1) to provide the title compound (6.2 g, 60.0%) as an oil. ¹H NMR δ ppm in CDCl₃: 8.92 (s, 1H), 8.02 (d, 1H, J = 11.2 Hz), 7.56 (d, 1H, J = 7.6 Hz), 7.36 (t, 1H, J = 8.0 Hz), 7.17–7.01 (m, 3H), 7.00–6.97 (m, 1H), 6.74–6.70 (m, 3H), 3.80 (s, 3H), 3.69 (s, 3H), 4.27 (q, 2H, J = 7.2 Hz), 1.27 (t, 3H, J = 6.8 Hz).

Compounds ii21, ii22, and ii24 were prepared in manner analogous to the method described above.

6.5. Ethyl 4,7-di-(4-isopropylthiophenyl)-6,8-difluoro-quinoline-3-carboxylate (ii28)

About 7.7 ml Et₃N was added to a solution of **i4** (8.0 g, 27.4 mmol) and 4-isopropylthiophenol (8.4 g, 55 mmol) in THF (80 ml) at room temperature and stirred for 1 h. The insoluble materials were filtered off, and the filtrate was evaporated in vacuo to give the crude product. Recrystallization from petroleum ether gave the title compound as a yellow solid (7.4 g, 50.0%), mp: 75–77 °C. ¹H NMR δ ppm in CDCl₃: 8.97 (s, 1H), 7.94 (dd, 1H, J = 10.4, 2.0 Hz), 7.35 (d, 2H, J = 8.0), 7.16–7.09 (m, 6H), 4.21 (q, 2H, J = 7.6), 2.88–2.83 (m, 2H), 1.29–1.19 (m, 15H).

Compounds ii25–ii27 were prepared in manner analogous to the method described above.

6.6. Ethyl 4,7,8-tri-(4-isopropylthiophenyl)-6-fluoro-quinoline-3-carboxylate (ii36)

Anhydrous K_2CO_3 (37.8 g, 274 mmol) was added to a mixture of **i4** (8.0 g, 27.4 mmol) and 4-isopropylthiophenol (13.7 g, 90.1 mmol) in DMF (80 ml) at 25 °C and stirred for 1 h. The insoluble materials were filtered off, and the filtrate was transferred to a separatory funnel, and ethyl acetate and water were added. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated to dryness. The resulting oil was purified by silica gel chromatography (petroleum ether–EtOAc, 6:1) to provide the title compound (13.0 g, 65.8%) as yellow oil. ¹H NMR δ ppm in CDCl₃: 9.04 (s, 1H), 8.14 (d, 1H, J = 11.2 Hz), 7.18–7.02 (m, 12H), 4.20 (q, 2H, J = 6.8 Hz), 2.88–2.81 (m,3H), 1.33–1.15 (m, 21H).

Compounds ii33–ii35 were prepared in manner analogous to the method described above.

Except for shifting reaction temperature from room temperature to 60 °C, **ii29–ii32** were prepared in manner analogous to the method described above.

Table 4. Physical properties and yield of 4-substituted thiophenyl quinoline-3-methanol (iii1-40)^a

Compound	Formula	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl $_{3}$
iii1	$C_{16}H_{13}NOS$	64.6	144–6	9.09 (s, 1H), 8.43 (d, 1H, <i>J</i> = 8.4 Hz), 8.14 (d, 1H, <i>J</i> = 8.4 Hz), 7.73–7.67 (m, 1H), 7.56–7.52 (m, 1H), 7.04–6.89 (m, 5H), 5.03 (s, 2H)
iii2	$C_{16}H_{12}FNOS$	76.5	130–2	9.10 (s, 1H), 8.43 (d, 1H, <i>J</i> = 8.4 Hz), 8.12 (dd, 1H, <i>J</i> = 8.6, 0.8 Hz), 7.72–7.67 (m, 1H), 7.56–7.52 (m, 1H), 7.05–7.01 (m, 2H), 6.90–6.85 (m, 2H), 5.04 (s, 2H)
iii3	$C_{17}H_{15}NO_2S$	61.5	122–4	9.10 (s, 1H), 8.38 (d, 1H, <i>J</i> = 8.4 Hz), 8.11 (d, 1H, <i>J</i> = 8.0 Hz), 7.70–7.66 (m, 1H), 7.54–7.50 (m, 1H), 7.04 (t, 1H, <i>J</i> = 8.0 Hz), 6.65–6.54 (m, 3H), 5.02 (s, 2H), 3.63 (s, 3H)
iii4	$C_{19}H_{19}NOS$	63.9	100–2	9.09 (s, 1H), 8.45 (d, 1H, <i>J</i> = 8.4 Hz), 8.14 (d, 1H, <i>J</i> = 8.0 Hz), 7.72–7.68 (m, 1H), 7.56–7.52 (m, 1H), 7.05–6.96 (m,4H), 5.02 (s, 2H), 2.82–2.78 (m, 1H), 1.17 (d, 6H,
iii5	$C_{16}H_{11}CINOS$	52.8	122	J = 7.2 Hz) 9.11 (s, 1H), 8.34 (d, 1H, $J = 9.2 \text{ Hz}$), 8.13 (d, 1H, $J = 2.0 \text{ Hz}$), 7.48 (dd, 1H, $J = 8.8$, 2.0 Hz), 7.21–7.14 (m, 3H), 7.03–7.09 (m, 2H), 5.01 (s, 2H)
iii6	C ₁₆ H ₁₁ CIFNOS	63.6	142–6	9.09 (s, 1H), 8.31 (d, 1H, <i>J</i> = 9.2 Hz), 8.11 (d, 1H, <i>J</i> = 2.0 Hz), 7.48 (dd, 1H, <i>J</i> = 8.8, 2.0 Hz), 7.05–7.02 (m, 2H), 6.92–6.88 (m, 2H), 5.02 (s, 2H)
iii7	$C_{17}H_{14}CINO_2S$	69.8	118	9.10 (s, 1H), 8.33 (d, 1H, $J = 8.8$ Hz), 8.12 (d, 1H, $J = 2.0$ Hz), 7.48 (dd, 1H, $J = 8.8$, 2.0 Hz), 7.09 (t, 1H, $J = 8.0$), 6.69–6.66 (m, 1H), 6.59–6.54 (m, 2H), 5.02 (s,
iii8	C ₁₉ H ₁₈ ClNOS	53.3	88–90	2H), 3.67 (s, 3H) 9.09 (s, 1H), 8.38 (d, 1H, <i>J</i> = 9.2 Hz), 8.12 (d, 1H, <i>J</i> = 2.0 Hz), 7.47 (dd, 1H, <i>J</i> = 8.8, 2.0 Hz), 7.06–6.96 (m,4H), 5.00 (s, 2H), 2.82–2.79 (m,1H), 1.17 (d, 6H, <i>J</i> = 7.2)
iii9	$C_{16}H_{11}CIFNOS$	61.8	120–4	9.12 (s, 1H), 8.25 (d, 1H, <i>J</i> = 6.8 Hz), 8.12 (d, <i>J</i> = 10.0 Hz), 7.25–7.18 (m, 3H), 7.06–7.03 (m, 2H), 5.02 (s, 2H)
iii10	$C_{16}H_{10}ClF_2NOS$	62.2	154–6	9.09 (s, 1H), 8.23 (d, 1H, <i>J</i> = 7.6 Hz), 8.11 (d, 1H, <i>J</i> = 10.4 Hz), 7.07–7.04 (m, 2H), 6.95–6.91 (m, 2H), 5.03 (s, 2H)
iii11	$C_{17}H_{13}CIFNO_2S$	75.6	117–8	9.11 (s, 1H), 8.24 (d, 1H, <i>J</i> = 7.6 Hz), 8.14 (d, 1H, <i>J</i> = 10.4 Hz), 7.15–7.11 (m, 1H), 6.73–6.70 (m, 1H), 6.60–6.57 (m, 2H), 5.04 (s, 2H), 3.71 (s, 3H)
iii12	C ₁₉ H ₁₇ CIFNOS	73.9	132–4	9.06 (s, 1H), 8.19 (d, 1H, <i>J</i> = 6.8 Hz), 8.13 (d, 1H, <i>J</i> = 10.8 Hz), 7.06 (dd, 2H, <i>J</i> = 6.4, 2.0 Hz), 6.96 (dd, 2H, <i>J</i> = 6.8, 2.0 Hz), 5.00 (s, 2H), 2.81 (m, 1H), 1.17 (d, 6H, <i>J</i> = 6.8 Hz)
iii13	$C_{16}H_{10}F_3NOS$	70.6	126–8	9.15 (s, 1H), 8.02–7.97 (m, 1H), 7.24–7.17 (m, 3H), 7.03–7.01 (m, 2H), 5.03 (s, 2H)
iii14	$C_{16}H_9F_4NOS$	63.2	140–2	9.13 (s, 1H), 8.00–7.95 (m, 1H), 7.06–7.02 (m, 2H), 6.92 (t, 2H, <i>J</i> = 7.2 Hz), 5.03 (s, 2H)
iii15	$C_{17}H_{12}F_3NO_2S$	63.2	100–2	9.16 (s, 1H), 8.03–7.98 (m, 1H), 7.13 (t, 1H, $J = 8.4$ Hz), 6.73–6.70 (m, 1H), 6.58–6.55 (m, 2H), 5.04 (s, 2H), 3.70 (s, 3H)
iii16	$C_{19}H_{16}F_3NOS$	76.7	99–102	9.13 (s, 1H), 8.05–8.00 (m, 1H), 7.10–7.06 (m, 2H), 6.99–6.96 (m, 2H), 5.02 (s, 2H), 2.84–2.81 (m,1H), 1.20–1.17 (m, 6H)
iii17	$C_{22}H_{17}NOS_2$	53.1	104	9.00 (s, 1H), 8.27 (d, 1H, <i>J</i> = 8.8 Hz), 7.83 (d, 1H, <i>J</i> = 1.6 Hz), 7.54–7.52 (m, 2H), 7.13–7.08 (m, 4H), 7.19–7.12 (m, 3H), 6.91–6.87 (m, 2H), 4.97 (s, 2H) (continued on next page)

Table 4 (continued)

Compound	Formula	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl ₃
iii18	$C_{22}H_{15}F_2NOS_2$	66.6	106–8	9.00 (s, 1H), 8.25 (d, 1H, <i>J</i> = 9.2 Hz), 7.73 (d, 1H, <i>J</i> = 1.6 Hz), 7.34 (dd, 1H, <i>J</i> = 9.2, 2.4 Hz), 7.56–7.52 (m 2H), 7.13–7.08 (m, 2H), 7.05–7.01 (m, 2H), 6.91–6.87 (n
iii19	$C_{24}H_{2321}NO_3S_2$	49.4	82–4	2H), 4.98 (s, 2H) 9.02 (s, 1H), 8.28 (d, 1H, <i>J</i> = 8.8 Hz), 7.88 (d, 1H,
				J = 1.6 Hz), 7.39 (dd, 1H, $J = 8.8$, 2.0 Hz), 7.29 (t, 1H, $J = 8.0 Hz$), 7.12–7.06 (m, 3H), 6.92–6.89 (m,1H), 6.68–6.65 (m,1H), 6.60–6.55 (m, 2H), 4.98 (s, 2H), 3.78 (s, 3H)
ii20	$C_{28}H_{29}NOS_2$	63.5	114	3.68 (s, 3H) 8.97 (s, 1H), 8.30 (d, 1H, <i>J</i> = 9.2 Hz), 7.77 (s, 1H), 7.36
				(dd, 1H, $J = 8.8$, 1.6 Hz), 7.48 (d, 2H, $J = 8.4$ Hz), 7.26 (2H, $J = 8.0$ Hz), 7.04 (d, 2H, $J = 8.0$ Hz), 6.95 (d, 2H, $J = 8.0$ Hz), 4.96 (s, 2H), 2.95–2.92 (m,1H), 2.83–2.79 (r
ii21	$C_{22}H_{16}FNOS_2$	50.6	88–90	1H), 1.28 (d, 6H, <i>J</i> = 6.8 Hz), 1.17 (d, 6H, <i>J</i> = 7.2 Hz) 8.91 (s, 1H), 7.97 (d, 1H, <i>J</i> = 11.2 Hz), 7.60 (d, 1H,
				<i>J</i> = 7.2 Hz), 7.54–7.53 (m, 2H), 7.40–7.39 (m, 3H), 7.18-7.11 (m, 3H), 6.99 (d, 2H, <i>J</i> = 7.2 Hz), 4.92 (s, 2H)
ii22	$C_{22}H_{14}F_3NOS_2$	87.5	108–10	8.95 (s, 1H), 7.99 (d, 1H, $J = 11.2$ Hz), 7.52 (d, 1H, $J = 7.6$ Hz), 7.60–7.59 (m, 2H), 7.15 (t, 2H, $J = 8.0$ Hz), 7.06, 7.02 (t, 2H, $J = 8.0$ Hz), 4.08 (s, 2H)
ii23	$C_{24}H_{20}FNO_3S_2$	45.9	93–5	7.06–7.03 (m, 2H), 6.92 (t, 2H, $J = 8.0$ Hz), 4.98 (s, 2H) 8.95 (s, 1H), 8.01 (d, 1H, $J = 11.2$ Hz), 7.67 (d, 1H, $J = 6.8$ Hz), 7.33 (t, 1H, $J = 8.0$ Hz), 7.15–7.08 (m, 3H),
				6.97–6.94 (m, 1H), 6.70–6.67 (m, 1H), 6.58–6.56 (m, 2H), 4.96 (s, 2H), 3.79 (s, 3H), 3.69 (s, 3H)
ii24	$C_{28}H_{28}FNOS_2$	59.8	126–8	8.91 (s, 1H), 8.03 (d, 1H, $J = 11.2$ Hz), 7.55 (d, 1H, $J = 8.0$ Hz), 7.53–7.50 (m, 2H), 7.31 (d, 2H, $J = 8.4$ Hz)
				7.06 (d, 2H, <i>J</i> = 8.4 Hz), 6.97–6.95 (m, 2H), 4.95 (s, 2H 2.98–2.94 (m, 1H), 2.83–2.78 (m, 1H), 1.30–1.27 (m, 6H 1.18 (d, 6H, <i>J</i> = 6.8 Hz)
ii25	$C_{22}H_{15}F_2NOS_2$	73.7	134–6	9.14 (s, 1H), 7.92 (dd, 1H, <i>J</i> = 9.6, 2.0 Hz), 7.38–7.25 (r 2H), 7.25–7.14 (m, 6H), 7.04–7.02 (m, 2H), 5.02 (s, 2H)
ii26	$C_{22}H_{13}F_4NOS_2$	75.7	149–50	9.12 (s, 1H), 7.88 (d, 1H, <i>J</i> = 10.0 Hz), 7.45 (dd, 2H, <i>J</i> = 7.6, 5.2 Hz), 7.06 (dd, 2H, <i>J</i> = 8.0, 5.2 Hz), 6.98–6.9
iii27	$C_{24}H_{19}F_2NO_3S_2$	57.2	122–4	(m, 4H), 5.03 (s, 2H) 9.14 (s, 1H), 7.93 (dd, 1H, <i>J</i> = 10.0, 1.6 hz), 7.18–7.10 (r 2H), 6.93–6.89 (m, 2H), 6.77–6.74 (m, 2H), 6.59–6.57 (r
ii28	$C_{28}H_{27}F_2NOS_2$	71.8	152–4	2H), 5.03 (s, 2H), 3.73 (s, 3H), 3.70 (s, 3H) 9.10 (s, 1H), 7.95 (dd, 1H, <i>J</i> = 10.4, 2.5 Hz), 7.35 (d, 2F <i>J</i> = 7.4 Hz), 7.13–7.07 (m, 4H), 7.00–6.97 (m, 2H), 5.01 (s)
ii29	$C_{28}H_{21}NOS_3$	60.9	190–3	2H), 2.87–2.81 (m, 2H), 1.21–1.18 (m, 12H) 9.13 (s, 1H), 7.93 (s, 1H), 7.88 (s, 1H), 7.60–7.54 (m, 5H) 7.44–7.40 (m, 5H), 7.19–7.17 (m, 3H), 6.88–6.87 (m, 2H)
ii30	$C_{28}H_{18}F_3NOS_3$	74.1	174–6	4.88 (s, 2H) 8.91 (s, 1H), 7.87 (s, 1H), 7.52 (s, 1H), 7.57–7.52 (m, 2H) 7.34–7.30 (m, 2H), 7.14 (t, 2H, <i>J</i> = 8.0), 7.01 (t, 2H,
iii31	$C_{31}H_{27}NO_4S_3$	68.7	112–5	<i>J</i> = 8.4), 6.88–6.87 (m, 4H), 4.98 (s, 2H) 8.90 (s, 1H), 8.12 (s, 1H), 7.64 (s, 1H), 7.32 (t, 1H, <i>J</i> = 8.6 7.19–6.82 (m, 8H), 6.64–6.62 (m, 1H), 6.43 (t, 1H, <i>J</i> = 2.6 6.39–6.36 (m, 1H), 4.94 (s, 2H), 3.78 (s, 3H), 3.71 (s, 3H)
ii32	$C_{37}H_{39}NOS_3$	71.8	96–8	3.66 (s, 3H) 8.84 (s, 1H), 7.99 (s, 1H), 7.57 (s, 1H), 7.50 (d, 2H, <i>J</i> = 8.6 7.29 (d, 2H, <i>J</i> = 8.4), 7.18 (d, 2H, <i>J</i> = 8.4), 6.99 (d, 2H, <i>J</i> = 8.4), 6.74 (d, 2H, <i>J</i> = 8.0), 5.97–5.92 (m, 2H), 4.93 (
ii33	$C_{28}H_{20}FNOS_3$	65.0	154–6	2H), 2.84–2.81 (m, 2H), 1.30–1.20 (m, 18H) 9.17 (s, 1H), 8.15 (d, 1H, <i>J</i> = 10.8 Hz), 7.26–7.04 (m, 15H
ii34	$C_{28}H_{17}F_4NOS_3$	78.5	200–3	5.00 (s, 2H) 9.15 (s, 1H), 8.10 (d, 1H, <i>J</i> = 10.8), 7.26–7.21 (m, 5H), 7.08 7.04 (m, 2H), 6.05 6.86 (m, 5H), 5.00 (s, 2H)
ii35	$C_{31}H_{26}FNO_4S_3$	66.9	110–2	7.08–7.04 (m, 2H), 6.95–6.86 (m, 5H), 5.00 (s, 2H) 9.17 (s, 1H), 8.15 (d, 1H, <i>J</i> = 10.4 Hz), 7.14–7.04 (m, 3F 6.80–6.78 (d, 1H, <i>J</i> = 8.0 Hz), 6.75–6.67 (m, 5H), 6.64–6.
ii36	$C_{37}H_{38}FNOS_3$	41.3	140–2	(m, 1H), 6.59–6.57 (m, 2H), 5.00 (s, 2H), 3.73–3.68 (m, 91 9.20 (s, 1H), 8.19 (d, 1H, <i>J</i> = 10.8 Hz), 7.21–7.02 (m, 12H 5.03 (s, 2H), 2.91–2.82 (m, 3H), 1.25–1.18 (m, 18H)
ii37	$C_{34}H_{25}NOS_4$	46.8	163–5	8.98 (s, 1H), 7.81 (s, 1H), 7.39–7.28 (m, 5H), 7.20–7.03 (s, 13H), 6.72–6.69 (m, 2H), 4.94 (s, 2H)

Table 4 (continued)

Compound	Formula	Yield (%)	Mp (°C)	¹ H NMR δ ppm in CDCl ₃
iii38	C ₃₄ H ₂₁ F ₄ NOS ₄	87.2	190–2	9.00 (s, 1H), 7.61 (s, 1H), 7.37–7.34 (m, 2H), 7.20–7.16 (m, 2H), 7.13–7.09 (m, 2H), 7.07–7.02 (m, 2H), 6.93–6.79 (m, 6H), 6.69–6.65 (m, 2H), 4.96 (s, 2H)
iii39	$C_{38}H_{33}NO_5 S_4$	55.4	116–8	9.01 (s, 1H), 7.87 (s, 1H), 7.22 (t, 1H, <i>J</i> = 8.0 Hz), 7.09 (t, 1H, <i>J</i> = 8.4 Hz), 7.04–6.92 (m, 5H), 6.73–6.55 (m, 7H), 6.30–6.24 (m, 2H), 3.70 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H), 3.64 (s, 3H), 4.94 (s, 2H)
iii40	$C_{46}H_{49}NOS_4$	55.0	170–3	8.96 (s, 1H), 7.78 (s, 1H), 7.30 (d, 2H, <i>J</i> = 7.0 Hz), 7.19 (d, 2H, <i>J</i> = 8.0 Hz), 7.12 (d, 2H, <i>J</i> = 7.4 Hz), 7.06–6.94 (m, 8H), 6.65 (d, 2H, <i>J</i> = 7.4), 4.93 (s, 2H), 2.96–2.93 (m, 1H), 2.86–2.76 (m, 3H), 1.29–1.14 (m, 24H)

^a The definition of R, R₁, R₂, and R₃ is the same as Table 1.

6.7. Ethyl 4,6,7,8-tetra-(4-isopropylthiophenyl)-quinoline-3-carboxylate (ii40)

A mixture of **i4** (8.0 g, 27.4 mmol), 4-isopropylthiophenol (18.7 g, 123.3 mmol), anhydrous K_2CO_3 (37.8 g, 274 mmol) in DMSO (80 ml) was stirred at 60 °C for 1 h. The insoluble materials were filtered off, and the filtrate was transferred to a separatory funnel and ethyl acetate and water were added. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated to dryness. The resulting oil was purified by silica gel chromatography (petroleum ether–EtOAc, 6:1) to provide the title compound (19.4 g, 84.3%) as yellow oil. ¹H NMR δ ppm in CDCl₃: 8.86 (s, 1H), 7.82 (s, 1H), 7.34–7.25 (m, 4H), 7.13–7.10 (m, 2H), 7.06–6.95 (m, 8H), 6.77–6.75 (m, 2H), 3.00–2.97 (m, 1H), 2.85–2.76 (m, 3H), 1.34–1.16 (m, 24H), 4.20 (q, 2H, J = 6.8 Hz), 0.86 (t, 3H, J = 5.2 Hz).

Compounds **ii37–ii39** were prepared in manner analogous to the method described above. The ¹HNMR data of all compounds **ii** were seen in Table 1.

6.8. 6,7,8-Trifluoro-4-thiophenyl-quinoline-3-methanol (iii13)

About 22 ml (55 mmol) of a 2.5 M DIBAL-H in toluene was added to a solution of **ii13** (8.0 g, 21.9 mmol) in anhydrous toluene (80 ml) at 0 °C under an atmosphere of nitrogen. The resulting solution was stirred for 2 h at 0 °C before quenching with 6 M HCl. The mixture was added to EtOAc and the organic layer was separated, washed with water, dried over Na₂SO₄ and concentration. Recrystallization from 95% ethanol to give the title compound as a yellow solid (5.0 g, 70.6%), mp: 126–128 °C. 1 H NMR $^{\delta}$ ppm in CDCl₃: 9.15 (s, 1H), 8.02–7.97 (m, 1H), 7.24–7.17 (m, 3H), 7.03–7.01 (m, 2H), 5.03 (s, 2H).

Compounds iii1–12, and iii14–40 were prepared in manner analogous to the method described above. Some physical properties are included in Table 4.

6.9. 6,7,8-Trifluoro-4-thiophenyl-3-bromomethyl-quino-line (iv13)

A solution of PBr₃ (8.4 g, 31 mmol) in CH₂Cl₂ (40 ml) was added to the mixture of **iii13** (5.0 g, 15.5 mmol) in

CH₂Cl₂ (30 ml) at 0 °C. The resulting mixture was stirred for 2 h at room temperature before quenching with a saturated aqueous NaHCO₃ solution to pH 8. The mixture was added to CH₂Cl₂ and the organic layer was separated, washed with water, dried over Na₂SO₄, and concentrated to afforded the title compound (5.9 g, 98%), which was used without further purification.

Compounds iv1–12 and iv14–40 were prepared in manner analogous to the method described above. Some physical properties are seen in Table 5.

6.10. 6,7,8-Trifluoro-4-thiophenyl-3 (diphenyl-oxo-phosphonyl-methyl)-quinoline (v13)

A solution of **iv13** (5.2 g, 13.4 mmol) and ethyl diphenylphosphinite (6.2 ml, 27 mmol) in toluene (25 ml) was refluxed for 2 h during which time the precipitated solid developed. After cooling to room temperature, the solid was isolated by filtration and washed with toluene. The product was then dried to afford the title compound (6.6 g, 75% yield of two steps), mp: 244–245 °C.

Compounds v1–12 and v14–40 were prepared in manner analogous to the method described above. Some physical properties are seen in Table 5.

6.11. *tert*-Butyl (3*R*,5*S*,6*E*)-7-[6,7,8-trifluoro-4-thiophenyl-quinoline-3-yl]-3,5-dihydroxy-3,5-*O*-isopropylidene-6-heptenoate (vii13)

1.2 ml (3 mmol) of a 2.5 M hexane solution of n-BuLi was added to a solution of 2,2,6,6-tetramethylpiperidine (0.5 g, 3 mmol) in anhydrous THF (10 ml) at 0 °C and stirred for 15 min. under an atmosphere of nitrogen. v13 (1.0 g, 2.0 mmol) was added to the resulting solution at 0 °C and stirred for 1 h at room temperature. vi (0.61 g, 2.4 mmol) in anhydrous THF (2 ml) was added to the solution and stirred for 2.5 h before quenching with 2 M HCl solution at 0 °C. The resulting mixture was added to EtOAc and the organic layer was separated, washed with brine, dried over Na₂SO₄ and concentrated. The resulting oil was purified by silica gel chromatography (petroleum ether-EtOAc, 5:1) to provide the title compound (0.6 g, 55.8%) as white 55.8%), mp: solid vii13 (0.6 g,169–171 °C. $\left[\alpha\right]_{\mathrm{D}}^{20} = +5.9$ (c 1, acetone). ¹H NMR δ ppm in CDCl₃:

Table 5. Physical properties and yield of 4-substituted-thiophenyl-3-bromomethyl (or 3-diphenyl-oxo-phosphonyl-methyl)-quinolines (iv1–40 or v1–40)^a

$$R_1$$
 R_2
 R_3
 R_3

iv1~40 :X=Br and v1~40 : X=Ph2P(O)

Compound	Formula	Yield (%)	Mp (°C)	Compound	Formula	Yield (%)	Mp (°C)
iv1	$C_{16}H_{12}BrNS$	67.2	156-60	V1	$C_{28}H_{23}NOPS$	81.5	228-30
iv2	$C_{16}H_{11}BrFNS$	76.5	130-2	V2	$C_{28}H_{22}FNOPS$	100	184-5
iv3	$C_{17}H_{14}BrNOS$	85.4	100	V3	$C_{29}H_{25}NO_2PS$	100	197–8
iv4	$C_{19}H_{18}BrNS$	_	_	V4	$C_{31}H_{29}NOPS$	79.4 ^b	190-2
iv5	$C_{16}H_{11}BrClNS$	87.0	104-6	V5	$C_{28}H_{21}CINOPS$	98.7	210-2
iv6	C ₁₆ H ₁₀ BrClFNS	83.3	112-4	V6	$C_{28}H_{20}ClFNOPS$	100	192-4
iv7	C ₁₇ H ₁₃ BrClNOS	86.1	92–4	V7	$C_{29}H_{23}CINO_2PS$	92.9	194–6
iv8	C ₁₉ H ₁₇ BrClNS	86.5	101-2	V8	$C_{31}H_{27}CINOPS$	99.8	238-40
iv9	$C_{16}H_{10}BrClFNS$	85	130-2	V9	$C_{28}H_{20}ClFNOPS$	88.9	238-40
iv10	C ₁₆ H ₉ BrClF ₂ NS	84.5	156–7	v10	C ₂₈ H ₁₉ ClF ₂ NOPS	100	250-2
iv11	C ₁₇ H ₁₂ BrClFNOS	83	108-10	v11	$C_{29}H_{22}ClFNO_2PS$	87.8	216-8
iv12	C ₁₉ H ₁₆ BrClFNS	85.0	132-4	v12	$C_{31}H_{26}ClFNOPS$	100	234–6
iv13	$C_{16}H_9BrF_3NS$	86.8	98-100	v13	$C_{28}H_{19}F_3NOPS$	96.9	244-5
iv14	$C_{16}H_8BrF_4NS$	_	_	v14	$C_{28}H_{18}F_4NOPS$	84.2 ^b	212-3
iv15	$C_{17}H_{11}BrF_3NOS$	80.3	112-4	v15	$C_{29}H_{21}F_3NO_2PS$	99.1	206-8
iv16	$C_{19}H_{15}BrF_3NS$	86.6	86–8	v16	$C_{31}H_{25}F_3NOPS$	87.9	236-8
iv17	$C_{22}H_{16}BrNS_2$	_	_	v17	$C_{34}H_{26}NOPS_2$	71.6 ^b	238-40
iv18	$C_{22}H_{14}BrF_2NS_2$	_	_	v18	$C_{34}H_{24}F_2NOPS_2$	89.8 ^b	213-5
iv19	$C_{24}H_{20}BrNO_2S_2$	_	_	v19	$C_{36}H_{30}NO_3PS_2$	87.8 ^b	190-2
iv20	$C_{28}H_{28}BrNS_2$	81.9	87–90	v20	$C_{40}H_{38}NOPS_2$	100	200-2
iv21	$C_{22}H_{15}BrFNS_2$	_	104	v21	$C_{34}H_{25}FNOPS_2$	62.0 ^b	238-41
iv22	$C_{22}H_{13}BrF_3NS_2$	89.8	150-2	v22	$C_{34}H_{23}F_3NOPS_2$	100	246-8
iv23	$C_{24}H_{19}BrFNO_2S_2$	_	oil	v23	$C_{36}H_{29}FNO_3PS_2$	84.0 ^b	229-30
iv24	$C_{28}H_{27}BrFNS_2$	74.2	145-7	v24	$C_{40}H_{37}FNOPS_2$	96.3	250-1
iv25	$C_{22}H_{14}BrF_2NS_2$	76.6	120-2	v25	$C_{34}H_{24}F_2NOPS_2$	72.9	246-8
iv26	$C_{22}H_{12}BrF_4NS_2$	_	_	v26	$C_{34}H_{22}F_4NOPS_2$	72.4 ^b	250-2
iv27	$C_{24}H_{18}BrF_2NO_2S_2$	_	_	v27	$C_{36}H_{28}F_2NO_3PS_2$	85.4 ^b	184-5
iv28	$C_{28}H_{26}BrF_2NS_2$	80.3	116–7	v28	$C_{40}H_{36}F_2NOPS_2$	98.7	236-40
iv29	$C_{28}H_{20}BrNS_3$	88.9	140-2	v29	$C_{40}H_{30}NOPS_3$	94.2	246-8
iv30	$C_{28}H_{17}BrF_3NS_3$	82.2	156-8	v30	$C_{40}H_{27}F_3NOPS_3$	90.7	261-3
iv31	$C_{31}H_{26}BrNO_3S_3$	_	_	v31	$C_{43}H_{36}NO_4PS_3$	82.1 ^b	156-8
iv32	$C_{37}H_{38}BrNS_3$	69.3	104-7	v32	$C_{49}H_{48}NOPS_3$	97.1	231-3
iv33	$C_{28}H_{19}BrFNS_3$	86.7	150-2	v33	$C_{40}H_{29}FNOPS_3$	86.2	238-40
iv34	$C_{28}H_{16}BrF_4NS_3$	90.5	141-2	v34	$C_{40}H_{26}F_4NOPS_3$	100	229-31
iv35	$C_{31}H_{25}BrFNO_3S_3$	_	_	v35	$C_{43}H_{35}FNO_4PS_3$	69.5 ^b	178-80
iv36	$C_{37}H_{37}BrFNS_3$	82.0	135–8	v36	$C_{49}H_{47}FNOPS_3$	100	212-6
iv37	$C_{34}H_{24}BrNS_4$	100	139-41	v37	$C_{46}H_{34}NOPS_4$	95.4	222-4
iv38	$C_{34}H_{20}BrF_4NS_4$	87.8	173-5	v38	$C_{46}H_{30}F_4NOPS_4$	82.8	225-7
iv39	$C_{38}H_{32}BrNO_4S_4$	_	_	v39	$C_{50}H_{42}NO_5PS_4$	93.9 ^b	104–6
iv40	$C_{46}H_{48}BrNS_4$	_	Oil	v40	$C_{58}H_{58}NOPS_4$	78.8	160-4

 $^{^{}a}$ The definition of R, $R_{1},\,R_{2},$ and R_{3} is the same as Table 1.

9.11 (s, 1H), 8.07–8.04 (m, 1H), 7.29–7.15 (m, 4H), 7.05–7.03 (m, 2H), 6.34 (dd, 1H, J = 16.8, 6.0 Hz), 4.56–4.52 (m, 1H), 4.32–4.29 (m, 1H), 2.47–2.27 (m, 2H), 1.64–1.21 (m, 17H).

Compounds vii1–12, vii14–40 were prepared in manner analogous to the method described above. Their physical properties are included in Table 6.

6.12. (4*R*, 6*S*)-6-[(*E*)-2-(6,7,8-Trifluoro-4-thiophenyl-quinoline-3-yl)-ethenyl]-3,4,5,6-tetrahydro-4-hydroxy-2*H*-pyran-2-one (A13)

A solution of vii13 (0.47 g, 0.86 mmol) and CF_3COOH (2 ml, 25.8 mmol) in CH_2Cl_2 (10 ml) was stirred at 0 °C for 2 h before quenching with a saturated aqueous NaHCO₃ solution. The mixture was added to EtOAc

^b Calculated on the two steps.

Table 6. Physical properties and yield of (3R, 5S, 6E)-tert-butyl-7-(4-substituted-thiophenyl-quinoline-3-yl)-3,5-dihydroxy-3, 5-O-iso-propylidene-hept-6-enoates $(vii1-40)^a$

Compound	Formula	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl ₃
vii1	C ₃₀ H ₃₆ NO ₄ S	−9.3, c 1, CH ₂ Cl ₂	29.6	135–6	9.13 (s, 1H), 8.45 (d, 1H, $J = 8.0$ Hz), 8.10 (d, 1H, $J = 8.4$ Hz), 7.67 (t, 1H, $J = 7.6$ Hz), 7.53 (t, 1H, $J = 8.0$ Hz), 7.31 (d, 1H, $J = 16.0$ Hz), 7.19–7.04 (m, 5H), 6.32 (dd, 1H, $J = 16.2$, 6.0 Hz), 4.56–4.52 (m, 1H), 4.32–4.30 (m, 1H), 2.48–2.28 (m, 2H), 1.62–1.24 (m, 17H)
vii2	C ₃₀ H ₃₅ FNO ₄ S	−9.4, c 1, CHCl ₃	26.7	110–2	9.10 (s, 1H), 8.45 (dd, 1H, J = 8.6, 1.2 Hz), 8.10 (d, 1H, J = 8.4 Hz), 7.70–7.66 (m, 1H), 7.57–7.52 (m, 1H), 7.30 (dd, 1H, J = 16.2, 0.8 Hz), 7.08–7.05 (m, 2H), 6.90–6.86 (m, 2H), 6.30 (dd, 1H, J = 16.4, 6.4 Hz), 4.57–4.53 (m, 1H), 4.34–4.30 (m, 1H), 2.49–2.29 (m, 2H), 1.67–1.62 (m, 1H), 1.34–1.25 (m, 1H), 1.54–1.44 (m, 15H)
vii3	$C_{31}H_{38}NO_5S$	-3.4, c 1, CH ₂ Cl ₂	22.2	106–8	9.14 (s, 1H), 8.43 (d, 1H, $J = 8.0 \text{ Hz}$), 8.10 (d, 1H, $J = 8.4 \text{ Hz}$), 7.68 (t, 1H, $J = 6.8 \text{ Hz}$), 7.53 (t, 1H, $J = 8.0 \text{ Hz}$), 7.21 (d, 1H, $J = 16.0 \text{ Hz}$), 7.08 (t, 1H, $J = 8.0$), 6.66–6.59 (m, 3H), 6.34 (dd, 1H, $J = 16.4$, 6.0 Hz), 4.59–4.54 (m, 1H), 4.33–4.31 (m, 1H), 3.67 (s, 3H), 2.48–2.29 (m, 2H), 1.65–1.64 (m, 1H), 1.35–1.27 (m, 1H), 1.51–1.43 (m, 15H)
vii4	C ₃₃ H ₄₂ NO ₄ S	+1.5, c 0.68, Acetone	28.5	107–8	9.12 (s, 1H), 8.49–8.47 (m, 1H), 8.09 (d, 1H, <i>J</i> = 8.0 Hz), 7.69–7.65 (m, 1H), 7.55–7.51 (m, 1H), 7.35 (d, 1H, <i>J</i> = 16.0 Hz), 7.04–6.98 (m, 4H), 6.32 (dd, 1H, <i>J</i> = 16.2, 6.4 Hz), 4.57–4.53 (m, 1H), 4.34–4.30 (m, 1H), 2.82–2.79 (m, 1H), 2.48–2.28 (m, 2H), 1.67–1.62 (m, 1H), 1.51–1.44 (m, 15H), 1.36–1.28 (m, 1H), 1.18 (d, 6H, <i>J</i> = 7.2)
vii5	C ₃₀ H ₃₅ ClNO ₄ S	+4.9, c 1, Acetone	31.9	130–2	(m, 151), 1.85 (1.20 (m, 111), 1.16 (a, 11, 1), 1.17 (b, 11, 1), 1.19 (b, 11, 1), 1.10 (c), 1.21 (s, 11), 8.38 (d, 11, J = 9.2 Hz), 8.09 (d, 114, J = 2.0 Hz), 7.46 (dd, 114, J = 8.8, 2.0 Hz), 7.28 (d, 114, J = 16.8 Hz), 7.20–7.02 (m, 51), 6.32 (dd, 114, J = 16.4, 5.6 Hz), 4.56–4.51 (m, 114), 4.34–4.27 (m, 114), 2.47–2.27 (m, 214), 1.63–1.23 (m, 1714)
vii6	C ₃₀ H ₃₄ CIFNO ₄ S	+11.9, c 1, Acetone	20.3	151–3	9.09 (s, 1H), 8.39 (d, 1H, <i>J</i> = 8.8 Hz), 8.09 (d, 1H, <i>J</i> = 2.0 Hz), 7.50–7.47 (m, 1H), 7.26 (d, 1H, <i>J</i> = 16.4 Hz), 7.08–7.04 (m, 2H), 6.92–6.87 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 4.57–4.53 (m, 1H), 4.35–4.29 (m, 1H), 2.49–2.29 (m, 2H), 1.67–1.24 (m, 17H)
vii7	C ₃₁ H ₃₇ ClNO ₅ S	+7.8, c 1, Acetone	25.0	96–8	9.12 (s, 1H), 8.36 (d, 1H, $J = 9.2$ Hz), 8.09 (d, 1H, $J = 1.6$ Hz), 7.46 (dd, 1H, $J = 9.2$, 2.4 Hz), 7.28 (dd, 1H, $J = 16.0$, 0.8 Hz), 7.10–7.06 (m, 1H), 6.68–6.58 (m, 3H), 6.33 (dd, 1H, $J = 16.2$, 6.0 Hz), 4.58–4.53 (m, 1H), 4.33–4.30 (m, 1H), 3.68 (s, 3H), 2.48–2.28 (m, 2H), 1.65–1.25, (m, 17H)
vii8	C ₃₃ H ₄₁ ClNO ₄ S	+1.9, c 1, CH ₂ Cl ₂	33.6	oil	9.09 (s, 1H), 8.38 (d, 1H, $J = 8.8$ Hz), 8.06 (d, 1H, $J = 2.0$ Hz), 7.45 (dd, 1H, $J = 9.0$, 1.6 Hz), 7.30 (d, 1H, $J = 16.0$ Hz), 7.04–6.95 (m, 4H), 6.30 (dd, 1H, $J = 16.0$, 5.6 Hz), 4.56–4.52 (m, 1H), 4.32–4.29 (m, 1H), 2.81–2.78 (m,1H), 2.46–2.27 (m, 2H), 1.65–1.22 (m, 17H), 1.16 (d, 6H, $J = 6.8$ Hz)
vii9	C ₃₀ H ₃₄ CIFNO ₄ S	–17.7, c 1, CHCl ₃	46.5	131–3	9.08 (s, 1H), 8.18–8.14 (m, 2H), 7.24 (dd, 1H, <i>J</i> = 15.8, 1.2 Hz), 7.22–7.12 (m, 3H), 7.05–7.03 (m, 2H), 6.34 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 4.56–4.52 (m, 1H), 4.33–4.28 (m, 1H), 2.47–2.27 (m, 2H), 1.64–1.23 (m, 17H) (continued on next page)

(continued on next page)

Table 6 (continued)

Compound	Formula	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl $_{3}$
vii10	C ₃₀ H ₃₃ ClF ₂ NO ₄ S	+11.6, c 1, Acetone	69.5	120–1	9.06 (s, 1H), 8.18–8.16 (m, 2H), 7.28 (d, 1H, <i>J</i> = 15.2 Hz) 7.09–7.05 (m, 2H), 6.91–6.89 (m, 2H), 6.33 (dd, 1H, <i>J</i> = 16.4, 5.2 Hz), 4.57–4.53 (m, 1H), 4.34–4.31 (m, 1H),
vii11	C ₃₁ H ₃₆ CIFNO ₅ S	−11.3, c 1, CHCl ₃	60.6	83–5	2.49–2.29 (m, 2H), 1.67–1.26 (m, 17H) 9.08 (s, 1H), 8.17–8.13 (m, 2H), 7.24 (dd, 1H, <i>J</i> = 17.2, 0.8 Hz), 7.10 (t, 1H, <i>J</i> = 8.4), 6.70–6.58 (m, 3H), 6.35 (dd 1H, <i>J</i> = 16.4, 6.0 Hz), 4.58–4.54 (m, 1H), 4.33–4.29 (m,
vii12	C ₃₃ H ₄₀ ClFNO ₄ S	+7.1, c 1.1, Acetone	56.1	oil	1H), 3.69 (s, 3H), 2.48–2.28 (m, 2H), 1.66–1.24 (m, 17H) 9.07 (s, 1H), 8.18–8.14 (m, 2H), 7.31 (d, 1H, <i>J</i> = 16.4 Hz) 7.06–6.97 (m,4H), 6.35 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 4.58– 4.54 (m, 1H), 4.33–4.31 (m, 1H), 2.83–2.80 (m,1H), 2.48–
vii13	$C_{30}H_{33}F_3NO_4S$	+5.9, c 1, Acetone	55.8	169–71	2.28 (m, 2H), 1.66–1.24 (m, 17H), 1.18 (d, 6H, <i>J</i> = 6.8) 9.11 (s, 1H), 8.07–8.04 (m, 1H), 7.29–7.15 (m, 4H), 7.05–7.03 (m, 2H), 6.34 (dd, 1H, <i>J</i> = 16.8, 6.0 Hz), 4.56–4.52 (m, 1H), 4.32–4.29 (m, 1H), 2.47–2.27 (m, 2H), 1.64–1.21 (m, 2H), 1.64–1.21 (m, 2H)
vii14	$C_{30}H_{32}F_4NO_4S$	+15.4, c 1, THF	70.8	126–8	17H) 9.07 (s, 1H), 8.07–8.02 (m, 1H), 7.24 (d, 1H, $J = 16.0 \text{ Hz}$) 7.07–7.04 (m,2H), 6.93–6.88 (m, 2H), 6.30 (dd, 1H, $J = 16.0$, 5.6 Hz), 4.56–4.52 (m, 1H), 4.33–4.28 (m, 1H), 2.47, 2.27 (m, 2H), 1.66, 1.10 (m, 17H)
vii15	$C_{31}H_{35}F_3NO_5S$	+11.4, c 1, Acetone	21.8	132–4	2.47–2.27 (m, 2H), 1.66–1.19 (m, 17H) 9.11 (s, 1H), 8.06–8.00 (m, 1H), 7.27 (d, 1H, <i>J</i> = 16.0 Hz) 7.10 (t, 1H, <i>J</i> = 8.0 Hz), 6.71–6.58 (m,1H), 6.60–6.58 (m, 2H), 6.36 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.58–4.54 (m, 1H), 3.70 (s, 3H), 4.34–4.28 (m, 1H), 2.48–2.28 (m, 2H), 1.66–
vii16	$C_{33}H_{39}F_3NO_4S$	+7.5, c 0.32, Acetone	58.3	94–96	1.23 (m, 17H) 9.11 (s, 1H), 8.09–8.04 (m, 1H), 7.31 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.08–6.98 (m,4H), 6.34 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz) 4.58–4.54 (m, 1H), 4.33–4.30 (m, 1H), 2.84–2.81 (m,1H), 2.48–2.28 (m, 2H), 1.68–1.25 (m, 17H), 1.19 (d, 6H,
vii17	$C_{36}H_{40}NO_4S_2$	+0.8, c 1, THF	26.2	109–10	J = 6.8 Hz) 9.05 (s, 1H), 8.32 (d, 1H, $J = 9.2 \text{ Hz}$), 7.81 (d, 1H, $J = 1.6 \text{ Hz}$), 7.54 (dd, 1H, $J = 6.6$, 1.6 Hz), 7.39–7.36 (m, 4H), 7.29–7.25 (m, 2H), 7.19–7.03 (m, 5H), 6.29 (dd, 1H, $J = 16.2$, 6.0 Hz), 4.55–4.51 (m, 1H), 4.32–4.29 (m, 1H),
vii18	$C_{36}H_{38}F_2NO_4S_2$	+6.4, c 0.7, Acetone	45.7	155–7	2.47–2.28 (m, 2H), 1.62–1.24 (m, 17H) 9.01 (s, 1H), 8.32 (d, 1H, <i>J</i> = 8.8 Hz), 7.70 (d, 1H, <i>J</i> = 1.6 Hz), 7.34 (dd, 1H, <i>J</i> = 10.0, 1.6 Hz), 7.24 (d, 1H, <i>J</i> = 16.4 Hz), 7.56–7.52 (m, 2H), 7.12–7.02 (m, 4H), 6.90–6.86 (m, 2H), 6.26 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.55–4.51 (m, 1H), 4.32–4.29 (m, 1H), 2.48–2.28 (m, 2H), 1.65–1.23 (m, 17H)
vii19	C ₃₈ H ₄₄ NO ₆ S ₂	-3.6, c 1, CH ₂ Cl ₂	52.8	oil	9.05 (s, 1H), 8.30 (d, 1H, <i>J</i> = 8.8 Hz), 7.84 (d, 1H, <i>J</i> = 1.2 Hz), 7.46 (dd, 1H, <i>J</i> = 9.0, 2.0 Hz), 7.30–7.24 (m, 2H), 7.11–7.05 (m, 3H), 6.91–6.88 (m, 1H), 6.66–6.59 (m 3H), 6.30 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 4.56–4.52 (m, 1H), 4.32–4.29 (m, 1H), 3.77 (s, 3H), 3.67 (s, 3H) 2.47–2.27 (m
vii20	C ₄₂ H ₅₂ NO ₄ S ₂	-10.2, c 0.84, CH ₂ Cl ₂	21.7	107–8	2H), 1.64–1.25 (m, 17H) 9.05 (s, 1H), 8.36 (d, 1H, <i>J</i> = 8.8 Hz), 7.77 (d, 1H, <i>J</i> = 1.6 Hz), 7.38 (dd, 1H, <i>J</i> = 9.0, 1.6 Hz), 7.51–7.49 (m, 2H), 7.30–7.28 (m,3H), 7.07–7.00 (m, 4H), 6.30 (dd, 1H, <i>J</i> = 16.2, 5.6 Hz), 4.58–4.54 (m, 1H), 4.35–4.32 (m, 1H), 2.98–2.95 (m,1H), 2.85–2.82 (m, 1H), 2.49–2.30 (m, 2H), 1.67–1.35 (m, 17H), 1.31 (d, 6H, <i>J</i> = 6.8 Hz), 1.21 (d, 6H)
vii21	$C_{36}H_{39}FNO_4S_2$	+1.2, c 1, Acetone	67.4	oil	J = 7.2 Hz), 8.97 (s, 1H), 8.05 (d, 1H, $J = 10.8$ Hz), 7.60 (d, 1H, $J = 7.2$ Hz), 7.23 (dd, 1H, $J = 16.4$, 1.2 Hz), 7.58–7.55 (m 2H), 7.44–7.40 (m, 3H), 7.21–7.11 (m, 3H), 7.05–7.03 (m 2H), 6.29 (dd, 1H, $J = 16.4$, 6.0 Hz), 4.55–4.50 (m, 1H), 4.31–4.28 (m, 1H), 2.47–2.26 (m, 2H), 1.62–1.20 (m, 17H)
vii22	$C_{36}H_{37}F_{3}NO_{4}S_{2} \\$	+5.3, c 0.88, Acetone	35.6	106–8	4.51–4.28 (m, 1H), 2.47–2.26 (m, 2H), 1.62–1.20 (m, 17H) 8.94 (s, 1H), 8.05 (d, 1H, $J = 11.2$ Hz), 7.59–7.50 (m, 3H) 7.25–7.04 (m, 5H), 6.93–6.88 (m, 2H), 6.27 (dd, 1H, $J = 16.4$, 5.6 Hz), 4.55–4.51 (m, 1H), 4.32–4.29 (m, 1H), 2.48–2.28 (m, 2H), 1.65–1.25 (m, 17H)

Table 6 (continued)

Compound	Formula	$[a]_{ m D}^{25}$	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl ₃
vii23	C ₃₈ H ₄₃ FNO ₆ S ₂	-2.4, c 1, Acetone	59.3	123–5	8.98 (s, 1H), 8.04 (d, 1H, <i>J</i> = 11.2 Hz), 7.65 (d, 1H, <i>J</i> = 7.6 Hz), 7.35–7.30 (m, 1H), 7.27–7.23 (m, 1H), 7.14
					7.07 (m, 3H), 6.96–6.93 (m, 1H), 6.68–6.59 (m, 3H), 6.3
					(dd,1H, <i>J</i> = 16.0, 5.6 Hz), 4.56–4.52 (m, 1H), 3.79 (s, 3H 3.69 (s, 3H), 4.32–4.29 (m, 1H), 2.47–2.27 (m, 2H), 1.63
					1.20 (m, 17H)
vii24	$C_{42}H_{51}FNO_4S_2$	−6.1, c 1, CH ₂ Cl ₂	45.4	94–5	8.95 (s, 1H), 8.05 (d, 1H, $J = 11.6$ Hz), 7.53–7.49 (m, 3H
	72 31 7 2	, , , , , ,			7.30–7.25 (m, 3H), 7.05–6.96 (m, 4H), 6.33 (dd, 1H,
					J = 16.0, 5.6 Hz), 4.55–4.51 (m, 1H), 4.31–4.27 (m, 1H),
					2.96-2.93 (m, 1H), 2.82-2.79 (m, 1H), 2.46-2.26 (m, 2H
					1.64-1.41 (m, 17H), 1.28 (d, 6H, $J = 6.8$ Hz), 1.17 (d, 6H)
		10 1 011 01	20.5	150.00	J = 7.2 Hz
vii25	$C_{36}H_{38}F_2NO_4S_2$	-1.8 , c 1, CH_2Cl_2	20.5	178–80	9.09 (s, 1H), 7.97 (dd, 1H, <i>J</i> = 10.0, 1.2 Hz), 7.39–7.37 (r
					3H), 7.29–7.15 (m, 6H), 7.07–7.05 (m, 2H), 6.36 (dd, 1H)
					<i>J</i> = 16.4, 5.6 Hz), 4.56–4.53 (m, 1H), 4.31–4.29 (m, 1H), 2.47–2.27 (m, 2H), 1.62–1.23 (m, 17H)
vii26	C ₃₆ H ₃₆ F ₄ NO ₄ S ₂	+7.6, c 1, CH ₂ Cl ₂	47.5	167–70	9.03 (s, 1H), 7.96 (dd, 1H, $J = 10.4$, 2.0 Hz), 7.25 (dd, 1H
· II = 0	03611361 41 (0402	. 7.0, 0 1, 0112012	17.5	107 70	J = 16.4, 1.2 Hz), 7.47 - 7.43 (m, 2H), 7.09 - 7.06 (m, 2H),
					6.99–6.89 (m, 4H), 6.34 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 4.57-
					4.53 (m, 1H), 4.33–4.30 (m, 1H), 2.49–2.28 (m, 2H), 1.67
					1.23 (m, 17H)
vii27	$C_{38}H_{42}F_2NO_6S_2$	+9.7, c 0.78, Acetone	52.9	119–21	9.10 (s, 1H), 7.95 (dd, 1H, $J = 10.4$, 2.0 Hz), 7.27 (d, 1H)
					J = 16.0 Hz), 7.17–7.09 (m, 2H), 6.93–6.89 (m, 2H), 6.70
					6.60 (m, 4H), 6.38 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 4.58–4.54 (r
					1H), 4.32–4.29 (m, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 2.47–
vii28	C ₄₂ H ₅₀ F ₂ NO ₄ S ₂	+10.4, c 1,THF	42.6	107-8	2.28 (m, 2H), 1.65–1.22 (m, 17H) 9.08 (s, 1H), 7.98 (dd, 1H, <i>J</i> = 10.0, 1.2 Hz), 7.36–7.29 (1
VII20	C4211501 214O4S2	10.4, 6 1,1111	42.0	107-0	3H), 7.13–6.99 (m, 6H), 6.36 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz),
					4.58–4.54 (m, 1H), 4.34–4.30 (m, 1H), 2.87–2.81 (m,
					2H),2.48–2.28 (m, 2H), 1.68–1.25 (m, 17H), 1.22–1.19 (1
					12H)
vii29 C	$C_{42}H_{44}NO_4S_3$	-10.2 , c 1.0, CH_2Cl_2	80.4	138-40	8.95 (s, 1H), 8.13 (s, 1H), 7.57 (s, 1H), 7.54–7.52 (m, 2H)
					7.43–7.39 (m, 3H), 7.32–7.24 (m, 6H), 7.14–7.09 (m, 3H)
					6.86–6.84 (m, 2H), 6.27 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 4.55
					4.50 (m, 1H), 4.31–4.28 (m, 1H), 2.46–2.26 (m, 2H), 1.6
vii30	C ₄₂ H ₄₁ F ₃ NO ₄ S ₃	+4.2, c 1, Acetone	29.4	158-60	1.25 (m, 17H) 8.95 (s, 1H), 7.98 (s, 1H), 7.50 (s, 1H), 7.56–7.51 (m, 2H)
/IISU	C ₄₂ 11 ₄₁ 1 31 10 ₄ 3 ₃	+4.2, ¢ 1, Accione	23.4	136-00	7.36–7.32 (m, 2H), 7.28–7.23 (m, 3H), 7.15–7.11 (m, 2H)
					7.04–7.00 (m, 2H), 6.86–6.84 (m, 2H), 6.29 (dd, 1H,
					J = 16.0, 5.6 Hz, $4.57-4.53 (m, 1H)$, $4.33-4.30 (m, 1H)$.
					2.48–2.28 (m, 2H), 1.69–1.28 (m, 17H)
vii31	$C_{45}H_{50}NO_{7}S_{3}$	−7.6, c 1.04, CH ₂ Cl ₂	58.6	oil	8.96 (s, 1H), 8.18 (s, 1H), 7.63 (s, 1H), 7.33–6.82 (m, 10H)
					6.63-6.60 (m, 1H), 6.44-6.40 (m, 2H), 6.28 (dd, 1H,
					J = 16.4, 6.0 Hz), 4.55–4.51 (m, 1H), 4.31–4.28 (m, 1H)
					3.77 (s, 3H), 3.70 (s, 3H), 3.65 (s, 3H), 2.46–2.27 (m, 2H)
	с и мос	-8.3, c 0.86, CH ₂ Cl ₂	26.6	110 1	1.64–1.22 (m, 17H)
vii32	$C_{51}H_{62}NO_4S_3$	-0.5 , c 0.00, CH_2Cl_2	36.6	110–1	8.91 (s, 1H), 8.04 (s, 1H), 7.53 (s, 1H), 7.49 (d, 2H, <i>J</i> = 8.0 Hz), 7.32–7.25 (m, 5H), 7.19 (d, 2H, <i>J</i> = 8.4 Hz)
					6.99 (d, 2H, J = 8.8 Hz), 6.76 (d, 2H, J = 8.0 Hz), 6.25 (d)
					1H, $J = 16.0$, 5.6 Hz), 4.56–4.52 (m, 1H), 4.32–4.29 (m,
					1H), 2.98–2.91 (m, 2H), 2.82–2.46 (m, 1H), 2.46–2.27 (r
					2H), 1.66–1.34 (m, 17H), 1.31–1.19 (m, 18H),
ii33	$C_{34}H_{26}FNO_3S_3\\$	-0.8 , c 1, CH_2Cl_2	59.2	159-61	9.13 (s, 1H), 8.19 (d, 1H, <i>J</i> = 10.8 Hz), 7.27–7.06 (m, 16H
					6.33 (dd, 1H, <i>J</i> = 16.0, 5.6 Hz), 4.54–4.50 (m, 1H), 4.32
	G II 73	.00	co =	10	4.28 (m, 1H), 2.47–2.27 (m, 2H), 1.61–1.18 (m, 17H)
ii34	$C_{42}H_{40}F_4NO_4S_3$	+9.2, c 1, Acetone	60.2	194–6	9.10 (s, 1H), 8.17 (d, 1H, $J = 10.4$ Hz), 7.27–7.19 (m, 5H
					7.10–7.05 (m, 2H), 6.94–6.86 (m, 6H), 6.31 (dd, 1H,
					J = 16.0, 5.2 Hz), 4.54–4.53 (m, 1H), 4.33–4.29 (m, 1H)
.::2 <i>E</i>	с и гмое	1100 01 44	90 O	o.i1	2.48–2.28 (m, 2H), 1.65–1.19 (m, 17H)
ii35	$C_{45}H_{49}FNO_7S_3$	+10.0, c 1, Acetone	80.0	oil	9.13 (s, 1H), 8.18 (d, 1H, <i>J</i> = 10.4 Hz), 7.25 (dd, 1H, <i>J</i> = 16.4, 1.2 Hz), 7.13–7.03 (m, 3H), 6.80–6.58 (m, 9H)
					6.44 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.56–4.52 (m, 1H), 4.31
					4.28 (m, 1H), 3.70–3.67 (m, 9H), 2.47–2.27 (m, 2H), 1.60
					1.20 (m, 17H)
					(continued on next pag

Table 6 (continued)

Compound	Formula	$[a]_{\rm D}^{25}$	Yield (%)	Mp (°C)	1 H NMR δ ppm in CDCl $_{3}$
vii36	C ₅₁ H ₆₁ FNO ₄ S ₃	+2.9, c 1, Acetone	57.3	111–2	9.13 (s, 1H), 8.17 (d, 1H, <i>J</i> = 10.4 Hz), 7.28 (d, 1H, <i>J</i> = 16.0 Hz), 7.13 (t, 4H, <i>J</i> = 8.4), 7.07–6.99 (m, 8H), 6.32 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.56–4.51 (m, 1H), 4.32–4.29 (m, 1H), 2.86–2.79 (m, 3H), 2.47–2.27 (m, 2H), 1.65–1.22 (m, 17H), 1.20–1.18 (m, 18H)
vii37	C ₄₈ H ₄₈ NO ₄ S ₄	+2.7, c 1, THF	38.1	160–2	9.00 (s, 1H), 7.87 (s, 1H), 7.42–7.02 (m, 19H), 6.74–6.72 (m, 2H), 6.28 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.54–4.49 (m, 1H), 4.30–4.287 (m, 1H), 2.46–2.26 (m, 2H), 1.63–1.22 (m, 17H)
vii38	$C_{48}H_{44}F_4NO_4S_4$	+8.4, c 1, Acetone	35.5	169–71	8.99 (s, 1H), 7.71 (s, 1H), 7.40–7.37 (m, 2H), 7.25–7.03 (m, 6H), 6.93–6.79 (m, 7H), 6.73–6.69 (m, 2H), 6.30 (dd, 1H, <i>J</i> = 16.4, 6.0 Hz), 4.56–4.52 (m, 1H), 4.31–4.28 (m, 1H), 2.47–2.27 (m, 2H), 1.67–1.24 (m, 17H)
vii39	$C_{52}H_{56}NO_8S_4$	+10.4, c 1, Acetone	76.7	oil	8.94 (s, 1H), 8.03 (s, 1H), 7.39–7.29 (m, 3H), 7.17–6.96 (m, 6H), 6.75–6.55 (m, 8H), 6.32 (dd, 1H, <i>J</i> = 16.4, 5.6 Hz), 4.65–4.61 (m, 1H), 4.36–4.33 (m, 1H), 3.80–3.63 (m, 9H), 2.07 (s, 3H), 2.50–2.31 (m, 2H), 1.77–1.23 (m, 17H)
vii40	C ₆₀ H ₇₂ NO ₄ S ₄	+6.9, c 1, Acetone	70.9	144–6	8.99 (s, 1H), 7.84 (s, 1H), 7.32–7.21 (m, 6H), 7.14–7.11 (m, 2H), 7.05–6.94 (m, 7H), 6.67–6.65 (m, 2H), 6.28 (dd, 1H, <i>J</i> = 16.0, 6.0 Hz), 4.54–4.52 (m, 1H), 4.31–4.28 (m, 1H), 2.97–2.94 (m, 1H), 2.85–2.76 (m, 3H), 2.47–2.27 (m, 2H), 1.65–1.34 (m, 17H), 1.30–1.14 (m, 24H)

^a The definition of R, R₁, R₂, and R₃ is the same as Table 1.

and the organic layer was separated, washed with water, dried over Na₂SO₄, and concentrated. The resulting oil was purified by silica gel chromatography (petroleum ether–EtOAc, 2:1) to provide the title compound (0.30 g, 81.4%) as white solid. mp: 177–178 °C. ¹H NMR δ ppm in CDCl₃:9.08 (s, 1H), 8.08–8.03 (m, 1H), 7.35 (dd, 1H, J = 16.4, 1.6 Hz), 7.23–7.14 (m, 3H), 7.04–7.02 (m, 2H), 6.36 (dd, 1H, J = 16.0, 5.6 Hz), 5.37–5.32 (m, 1H), 4.37–4.35 (m, 1H), 2.76–2.62 (m, 2H), 2.05–1.77 (m, 2H).

All other 3,5-dihydroxy-3,5-*O*-isopropylidene-6-heptenoates were converted to the corresponding pyran-2-ones in the similar manner. The spectra data of **A1–A40** are shown in Table 2.

6.13. Isolation of HMG CoA reductase

Male Holtzman–Sprague–Dawley rats were acclimated to an alternate 12-h light–dark cycle for a period of 2–3 weeks. The animals, weighing 200–250 g, were fed ordinary diets containing 2% cholestyramine and water for 4 days prior to sacrifice at the mid-dark period, which is the diurnal high point of enzyme activity.¹⁰

The microsomal fraction enriched in solubilized HMG CoA reductase was prepared by slow freezing (-80 °C) and thawing according to the method of Heller and Shrewsbury. The Bradford Method (Coomassie brilliant blue) was used for enzyme quantitation.

6.14. HMG CoA reductase inhibition assay in vitro

The HMG CoA reductase inhibitory activity was assayed spectrophotometrically, following the method of Kleinsek et al., whereby the rate of decrease in absorbance at 340 nm due to the oxidation of NADPH was measured.

The standard assay mixture contained 0.1 mM HMG CoA, 0.2 mM NADPH, 0.2 mM KCl, 4 mM EDTA, 10 mM dithiothreitol, and 160 mM potassium phosphate buffer (pH 7.0) in a total volume of 140 μL.

The reaction mixture containing the enzyme ($100-150 \mu g/140 \mu L$) and all components except HMG CoA were prior monitored to detect any HMG CoA independent oxidation of NADPH.

Before bioassay, the test compounds were dissolved in 0.1 N NaOH/THF (1/1) (during the process, the lactone was hydrolyzed into the sodium salt of dihydroxy acid) and diluted with the buffer. The solution obtained was added to the assay system at multiconcentration levels. The enzymatic reaction was initiated by addition of HMG CoA. After the solution was incubated for 30 min at 37 °C, the reaction was terminated and the rate of decreased absorbance at 340 nm was measured.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2007. 08.044.

References and notes

- Shepherd, J.; Cobbe, S. M.; Ford, I.; Isles, C. G.; Lorimer, A. R.; Macfarlane, P. W.; McKillop, J. H.; Packard, C. J. N. Engl. J. Med. 1995, 333, 1301.
- 2. Endo, A. J. Lipid. Res. 1992, 33, 1569.
- Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. Bioorg. Med. Chem. 2001, 9, 2727.
- 4. Stokker, G. E.; Alberts, A. W.; Anderson, P. S.; Cragoe, E. J., Jr.; Deana, A. A.; Gilfillan, J. L.;

- Hirshfield, J.; Holtz, W. J.; Hoffman, W. F.; Huff, J. W.; Lee, T. J.; Novella, F. C.; Prugh, J. D.; Rooney, C. S.; Smith, R. L.; Willard, A. K. *J. Med. Chem.* **1986**, *29*, 170.
- (a) Kathawala, F. G. Med. Res. Rev. 1991, 11, 121; (b) Roth, B. D.; Ortwine, D. F.; Hoefte, M. L.; Stratton, C. D.; Sliskovic, D. R.; Wilson, M. W.; Newton, R. S. J. Med. Chem. 1990, 33, 21.
- Sliskovic, D. R.; Picard, J. A.; Roark, W. H.; Roth, B. D.; Ferguson, E.; Krause, B. R.; Newton, R. S.; Sekerke, C.; Shaw, M. K. J. Med. Chem. 1991, 34, 367
- 7. Zhang, Z.; Zhou, W.; Yu, A. Bioorg. Med. Chem. Lett. 2004, 14, 393.
- 8. Cai, Z.; Zhou, W.; Synth. Commun. in press.
- Kleinsek, D. A.; Dugan, R. E.; Baker, T. A.; Porter, J. W. Methods Enzymol. 1981, 71, 462.
- 10. Kuroda, M.; Endo, A. Biochem. Biophys. Acta. 1977, 486, 70.
- Kleinsek, D. A.; Ranfanathan, S.; Porter, J. W. Proc. Natl. Acad. Sci. 1977, 74, 1431.
- Heller, R. A.; Shrewsbury, M. A. J. Biol. Chem. 1976, 251, 3815.
- Kim, H.-J.; Lee, D.-H.; Hwang, Y.-Y.; Lee, K.-S.; Lee, J.-S. J. Agric. Food. Chem. 2005, 53, 5882.